-
Generative Artificial Intelligence Use in Healthcare: Opportunities for Clinical Excellence and Administrative Efficiency.
Generative Artificial Intelligence (Gen AI) has transformative potential in healthcare to enhance patient care, personalize treatment options, train healthcare professionals, and advance medical research. This paper examines various clinical and non-clinical applications of Gen AI. In clinical settings, Gen AI supports the creation of customized treatment plans, generation of synthetic data, analysis of medical images, nursing workflow management, risk prediction, pandemic preparedness, and population health management. By automating administrative tasks such as medical documentations, Gen AI has the potential to reduce clinician burnout, freeing more time for direct patient care. Furthermore, application of Gen AI may enhance surgical outcomes by providing real-time feedback and automation of certain tasks in operating rooms. The generation of synthetic data opens new avenues for model training for diseases and simulation, enhancing research capabilities and improving predictive accuracy. In non-clinical contexts, Gen AI improves medical education, public relations, revenue cycle management, healthcare marketing etc. Its capacity for continuous learning and adaptation enables it to drive ongoing improvements in clinical and operational efficiencies, making healthcare delivery more proactive, predictive, and precise.
Bhuyan SS
,Sateesh V
,Mukul N
,Galvankar A
,Mahmood A
,Nauman M
,Rai A
,Bordoloi K
,Basu U
,Samuel J
... -
《-》
-
Generative AI in healthcare: an implementation science informed translational path on application, integration and governance.
Artificial intelligence (AI), particularly generative AI, has emerged as a transformative tool in healthcare, with the potential to revolutionize clinical decision-making and improve health outcomes. Generative AI, capable of generating new data such as text and images, holds promise in enhancing patient care, revolutionizing disease diagnosis and expanding treatment options. However, the utility and impact of generative AI in healthcare remain poorly understood, with concerns around ethical and medico-legal implications, integration into healthcare service delivery and workforce utilisation. Also, there is not a clear pathway to implement and integrate generative AI in healthcare delivery.
This article aims to provide a comprehensive overview of the use of generative AI in healthcare, focusing on the utility of the technology in healthcare and its translational application highlighting the need for careful planning, execution and management of expectations in adopting generative AI in clinical medicine. Key considerations include factors such as data privacy, security and the irreplaceable role of clinicians' expertise. Frameworks like the technology acceptance model (TAM) and the Non-Adoption, Abandonment, Scale-up, Spread and Sustainability (NASSS) model are considered to promote responsible integration. These frameworks allow anticipating and proactively addressing barriers to adoption, facilitating stakeholder participation and responsibly transitioning care systems to harness generative AI's potential.
Generative AI has the potential to transform healthcare through automated systems, enhanced clinical decision-making and democratization of expertise with diagnostic support tools providing timely, personalized suggestions. Generative AI applications across billing, diagnosis, treatment and research can also make healthcare delivery more efficient, equitable and effective. However, integration of generative AI necessitates meticulous change management and risk mitigation strategies. Technological capabilities alone cannot shift complex care ecosystems overnight; rather, structured adoption programs grounded in implementation science are imperative.
It is strongly argued in this article that generative AI can usher in tremendous healthcare progress, if introduced responsibly. Strategic adoption based on implementation science, incremental deployment and balanced messaging around opportunities versus limitations helps promote safe, ethical generative AI integration. Extensive real-world piloting and iteration aligned to clinical priorities should drive development. With conscientious governance centred on human wellbeing over technological novelty, generative AI can enhance accessibility, affordability and quality of care. As these models continue advancing rapidly, ongoing reassessment and transparent communication around their strengths and weaknesses remain vital to restoring trust, realizing positive potential and, most importantly, improving patient outcomes.
Reddy S
《Implementation Science》
-
Artificial Intelligence in Hand Surgery - How Generative AI is Transforming the Hand Surgery Landscape.
Tan RES
,Teo WZW
,Puhaindran ME
《-》
-
Generative Artificial Intelligence in Anatomic Pathology.
Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.
To explore the applications, benefits, and challenges of generative AI in anatomic pathology, with a focus on its impact on diagnostic processes, workflow efficiency, education, and research.
A comprehensive review of current literature and recent advancements in the application of generative AI within anatomic pathology, categorized into unimodal and multimodal applications, and evaluated for clinical utility, ethical considerations, and future potential.
Generative AI demonstrates significant promise in various domains of anatomic pathology, including diagnostic accuracy enhanced through AI-driven image analysis, virtual staining, and synthetic data generation; workflow efficiency, with potential for improvement by automating routine tasks, quality control, and reflex testing; education and research, facilitated by AI-generated educational content, synthetic histology images, and advanced data analysis methods; and clinical integration, with preliminary surveys indicating cautious optimism for nondiagnostic AI tasks and growing engagement in academic settings. Ethical and practical challenges require rigorous validation, prompt engineering, federated learning, and synthetic data generation to help ensure trustworthy, reliable, and unbiased AI applications. Generative AI can potentially revolutionize anatomic pathology, enhancing diagnostic accuracy, improving workflow efficiency, and advancing education and research. Successful integration into clinical practice will require continued interdisciplinary collaboration, careful validation, and adherence to ethical standards to ensure the benefits of AI are realized while maintaining the highest standards of patient care.
Brodsky V
,Ullah E
,Bychkov A
,Song AH
,Walk EE
,Louis P
,Rasool G
,Singh RS
,Mahmood F
,Bui MM
,Parwani AV
... -
《-》
-
Recommendations for Clinicians, Technologists, and Healthcare Organizations on the Use of Generative Artificial Intelligence in Medicine: A Position Statement from the Society of General Internal Medicine.
Generative artificial intelligence (generative AI) is a new technology with potentially broad applications across important domains of healthcare, but serious questions remain about how to balance the promise of generative AI against unintended consequences from adoption of these tools. In this position statement, we provide recommendations on behalf of the Society of General Internal Medicine on how clinicians, technologists, and healthcare organizations can approach the use of these tools. We focus on three major domains of medical practice where clinicians and technology experts believe generative AI will have substantial immediate and long-term impacts: clinical decision-making, health systems optimization, and the patient-physician relationship. Additionally, we highlight our most important generative AI ethics and equity considerations for these stakeholders. For clinicians, we recommend approaching generative AI similarly to other important biomedical advancements, critically appraising its evidence and utility and incorporating it thoughtfully into practice. For technologists developing generative AI for healthcare applications, we recommend a major frameshift in thinking away from the expectation that clinicians will "supervise" generative AI. Rather, these organizations and individuals should hold themselves and their technologies to the same set of high standards expected of the clinical workforce and strive to design high-performing, well-studied tools that improve care and foster the therapeutic relationship, not simply those that improve efficiency or market share. We further recommend deep and ongoing partnerships with clinicians and patients as necessary collaborators in this work. And for healthcare organizations, we recommend pursuing a combination of both incremental and transformative change with generative AI, directing resources toward both endeavors, and avoiding the urge to rapidly displace the human clinical workforce with generative AI. We affirm that the practice of medicine remains a fundamentally human endeavor which should be enhanced by technology, not displaced by it.
Crowe B
,Shah S
,Teng D
,Ma SP
,DeCamp M
,Rosenberg EI
,Rodriguez JA
,Collins BX
,Huber K
,Karches K
,Zucker S
,Kim EJ
,Rotenstein L
,Rodman A
,Jones D
,Richman IB
,Henry TL
,Somlo D
,Pitts SI
,Chen JH
,Mishuris RG
... -
《-》