Construction of a prognostic model for gastric cancer based on immune infiltration and microenvironment, and exploration of MEF2C gene function.

来自 PUBMED

作者:

Wang SYWang YXGuan LSShen AHuang RJYuan SQXiao YLWang LSLei DZhao YLin CWang CPYuan ZP

展开

摘要:

Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC. Transcriptome sequence data of GC was obtained from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and PRJEB25780 cohort for subsequent immune infiltration analysis, immune microenvironment analysis, consensus clustering analysis and feature selection for definition and classification of gene M and N. Principal component analysis (PCA) modeling was performed based on gene M and N for the calculation of immune checkpoint inhibitor (ICI) Score. Then, a Nomogram was constructed and evaluated for predicting the prognosis of GC patients, based on univariate and multivariate Cox regression. Functional enrichment analysis was performed to initially investigate the potential biological mechanisms. Through Genomics of Drug Sensitivity in Cancer (GDSC) dataset, the estimated IC50 values of several chemotherapeutic drugs were calculated. Tumor-related transcription factors (TFs) were retrieved from the Cistrome Cancer database and utilized our model to screen these TFs, and weighted correlation network analysis (WGCNA) was performed to identify transcription factors strongly associated with immunotherapy in GC. Finally, 10 patients with advanced GC were enrolled from Sun Yat-sen University Cancer Center, including paired tumor tissues, paracancerous tissues and peritoneal metastases, for preparing sequencing library, in order to perform external validation. Lower ICI Score was correlated with improved prognosis in both the training and validation cohorts. First, lower mutant-allele tumor heterogeneity (MATH) was associated with lower ICI Score, and those GC patients with lower MATH and lower ICI Score had the best prognosis. Second, regardless of the T or N staging, the low ICI Score group had significantly higher overall survival (OS) compared to the high ICI Score group. For its mechanisms, consistently, for Camptothecin, Doxorubicin, Mitomycin, Docetaxel, Cisplatin, Vinblastine, Sorafenib and Paclitaxel, all of the IC50 values were significantly lower in the low ICI Score group compared to the high ICI Score group. As a result, based on univariate and multivariate Cox regression, ICI Score was considered to be an independent prognostic factor for GC. And our Nomogram showed good agreement between predicted and actual probabilities. Based on CIBERSORT deconvolution analysis, there was difference of immune cell composition found between high and low ICI Score groups, probably affecting the efficacy of immunotherapy. Then, MEF2C, a tumor-related transcription factor, was screened out by WGCNA analysis. Higher MEF2C expression is significantly correlated with a worse OS. Moreover, its higher expression is also negatively correlated with tumor mutation burden (TMB) and microsatellite instability (MSI), but positively correlated with several immunosuppressive molecules, indicating MEF2C may exert its influence on tumor development by upregulating immunosuppressive molecules. Finally, based on transcriptome sequencing data on 10 paired tumor tissues from Sun Yat-sen University Cancer Center, MEF2C expression was significantly lower in paracancerous tissues compared to tumor tissues and peritoneal metastases, and it was also lower in tumor tissues compared to peritoneal metastases, indicating a potential positive association between MEF2C expression and tumor invasiveness. Our prognostic model can effectively predict outcomes and facilitate stratification GC patients, offering valuable insights for clinical decision-making. The identified transcription factor MEF2C can serve as a biomarker for assessing the efficacy of immunotherapy for GC.

收起

展开

DOI:

10.1186/s12920-024-02082-4

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

BMC Medical Genomics

影响因子:3.618

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读