Up-front dissection of the uterovesical space or "bladder-first approach" reduces hemorrhage and bladder injury during hysterectomy for placenta accreta spectrum: reconfirmed in 78 more cases in a prospective single-center study.
Cesarean hysterectomy for placenta accreta spectrum disorder may be associated with severe hemorrhage because of placental invasion of the myometrium and the uterovesical space or parametrium. It leads to serious complications, such as massive hemorrhage requiring massive transfusion, coagulopathy, bladder and ureteric injuries, need for intensive care unit admission and prolonged hospital stay. To reduce the complications of cesarean hysterectomy for placenta accreta spectrum disorder, ongoing efforts are being made to develop different surgical approaches. In previous 12 cases upfront dissection of uterovesical space (bladder-first approach) before delivery of the neonate was observed to reduce hemorrhage arising from extensive neovascularization in this area and bladder injury.
This study aimed to assess the efficacy of the bladder-first approach in a large sample to reduce the complications of cesarean hysterectomy for placenta accreta spectrum disorder.
This study presented data of 78 women (2017-2022) who underwent cesarean hysterectomy for placenta accreta spectrum disorder using the "bladder-first approach" from a tertiary care institute in Chandigarh, India. In this surgical approach, dissection of the uterovesical fold from the lower uterine segment to the cervix was performed before making the uterine incision for delivery. During this dissection, vascular areas were isolated and coagulated with bipolar electrosurgery or ligated with silk suture and then divided.
The 78 women with placenta accreta spectrum disorder underwent cesarean hysterectomy under general anesthesia. The mean gestational age was 35.0±2.5 weeks (range, 25.4-38.0), the mean blood loss was 1.56±1.06 L (range, 0.40-5.00 L), and the mean number of blood transfusions was 2.08±2.10 units (range, 0.00-9.00). Bladder injury occurred in 3 of 78 women (3.8%), and intensive care unit admission (for ≤24 hours) was needed by 3 of 78 women (3.8%). Histology was available in 73 of 78 women (19 with placenta percreta, 23 with placenta increta, and 31 with placenta accreta). There were 3 of 78 antenatal stillbirths. Of note, 75 women had live-born neonates, including 2 pairs of twins. The Apgar score of ≤7 at 5 minutes was seen in 6 of 77 neonates, and 20 of 77 neonates required neonatal intensive care unit care. There was 1 neonatal death on day 3 of life because of extreme prematurity and sepsis. In addition, 74 women went home with neonates, including 2 pairs of twins.
Our data support that up-front dissection of the uterovesical space or "bladder-first approach" reduces hemorrhage and bladder injury during cesarean hysterectomy in placenta accreta spectrum disorder, with no adverse effect on neonatal outcome. Achieving peripheral vascular control of the neovascularized uterovesical area before achieving control of the central vascular supply (uterine arteries) reduced intraoperative hemorrhage. This approach requires no additional resource and can be implemented easily in developing countries.
Saha PK
,Bagga R
,Singla R
,Arora A
,Jain V
,Suri V
,Jain K
,Kumar P
,Gupta N
,Jain A
,Singh T
,Mavuduru RS
... -
《-》
Far Posterior Approach for Rib Fracture Fixation: Surgical Technique and Tips.
The present video article describes the far posterior or paraspinal approach to posterior rib fractures. This approach is utilized to optimize visualization intraoperatively in cases of far-posterior rib fractures. This technique is also muscle-sparing, and muscle-sparing posterolateral, axillary, and anterior approaches have been shown to return up to 95% of periscapular strength by 6 months postoperatively1.
Like most fractures, the skin incision depends on the fracture position. The vertical incision is made either just medial to a line equidistant between the palpable spinous processes and medial scapular border or directly centered over the fracture line in this region. The incision and superficial dissection must be extended cranially and caudally, approximately 1 or 2 rib levels past the planned levels of instrumentation, in order to allow muscle elevation and soft-tissue retraction. Superficial dissection reveals the trapezius muscle, with its fibers coursing from inferomedial to superolateral caudal to the scapular spine, and generally coursing transversely above this level. The trapezius is split in line with its fibers (or elevated proximally at the caudal-most surface), and the underlying layer will depend on the location of the incision. The rhomboid minor muscle overlies ribs 1 and 2, the rhomboid major muscle overlies ribs 3 to 7, and the latissimus dorsi overlies the remaining rib levels. To avoid muscle transection, the underlying muscle is also split in line with its fibers. Next, the thoracolumbar fascia is encountered and sharply incised, revealing the erector spinae muscles, which comprise the spinalis thoracis, longissimus thoracis, and iliocostalis thoracis muscles. These muscles and their tendons must be sharply elevated from lateral to midline; electrocautery is useful for this because there is a robust blood supply in this region. Medially, while retracting the paraspinal musculature, visualization with this approach can extend to the head and neck of the rib, and even to the spine. Following deep dissection, the fractures are now visualized. During fracture reduction, it is critical to assess reduction of both the costovertebral joint and the costotransverse joint. With fractures closer to the spine, it is recommended to have at least 2 cm between the rib head and tubercle in order to allow 2 plate holes to be positioned on the neck of the rib; if comminution exists and plating onto the transverse process is needed, several screws are required here for stability as well. For appropriate stability if plating onto the spine is not required, a minimum of 3 locking screws on each side of the fracture are recommended. Contouring of the plates to match the curvature of the rib and to allow for proper apposition may be required with posterior rib fractures. Screws must be placed perpendicular to the rib surface. Following operative stabilization of the rib fractures, a layered closure is performed, and a soft dressing is applied.
Nonoperative alternatives include non-opioid and opioid medications as well as corticosteroid injections for pain control. Supportive mechanical ventilation and physiotherapy breathing exercises can also be implemented as needed. Operative alternatives include open reduction and internal fixation utilizing conventional locking plates and screws.
Rib fractures are often treated nonoperatively when nondisplaced because of the surrounding soft-tissue support2,3. According to Chest Wall Injury Society guidelines, contraindications to surgical fixation of rib fractures include patients requiring ongoing resuscitation; rib fractures involving ribs 1, 2, 11, or 12, which are relative contraindications; severe traumatic brain injury; and acute myocardial infarction. Patient age of <18 years is also a relative contraindication for the operative treatment of rib fractures. The current literature does not recommend surgical fixation in this age group because these fractures typically heal as the patient ages; however, fracture-dislocations may require the use of instrumentation to prevent displacement. Currently, the U.S. Food and Drug Administration does not approve most plating systems for patients <18 years old4. In certain cases, including those with substantial displacement, persistent respiratory distress, pain, or fracture nonunion, stabilization with open reduction and internal fixation may be appropriate5-7. In cases of flail chest injuries, surgery is often indicated6. Flail chest injuries have been noted in the literature to have an incidence of approximately 150 cases per 100,000 injuries and have been shown to carry a mortality rate of up to 33%8,9. Surgical treatment of rib fractures has been shown to be associated with a decreased hospital length of stay and mortality rate in patients with major trauma1.
Expected outcomes of this procedure include low complication rates, decreased hospital and intensive care unit length of stay, and reduced mechanical ventilation time10,11. However, as with any procedure, there are also risks involved, including iatrogenic lung injury from long screws or an aortic or inferior vena cava injury with aggressive manipulation of displaced fractured fragments, especially on the left side of the body. During open reduction, there is also a risk of injuring the neurovascular bundle. Tanaka et al. demonstrated a significant reduction in the rate of postoperative pneumonia in their operative group (22%) compared with their nonoperative group (90%)12. Schuette et al. demonstrated a 23% rate of postoperative pneumonia, 0% mortality at 1 year, an average of 6.2 days in the intensive care unit, an average total hospital length of stay of 17.3 days, and an average total ventilator time of 4 days in the operative group10. Prins et al. reported a significantly lower incidence of pneumonia in operative (24%) versus nonoperative patients (47.3%; p = 0.033), as well as a significantly lower 30-day mortality rate (0% versus 17.7%; p = 0.018)3. This procedure utilizes a muscle-sparing technique, which has demonstrated successful results in the literature on the use of the posterolateral, axillary, and anterior approaches, returning up to 95% of periscapular strength, compared with the uninjured shoulder, by 6 months postoperatively1. The use of a muscle-sparing technique with the far-posterior approach represents a topic that requires further study in order to compare the results with the successful results previously shown with other approaches.
The ipsilateral extremity can be prepared into the field to allow its intraoperative manipulation in order to achieve scapulothoracic motion and improved subscapular access.For costovertebral fracture-dislocations, the vertical incision line is made just medial to a line equidistant between the palpable spinous processes and medial scapular border.Lateral decubitus positioning can be utilized to allow for simultaneous access to fractures that extend more laterally and warrant a posterolateral approach; however, it is generally more difficult to access the fracture sites near the spine with this approach.This muscle-sparing technique is recommended to optimize postoperative periscapular strength, as previously demonstrated with other approaches.Incision and superficial dissection must be extended cranially and caudally approximately 1 or 2 rib levels past the planned levels of instrumentation in order to allow muscle elevation and soft-tissue retraction.To avoid muscle transection during surgical dissection, the underlying muscle is split in line with its fibers.During deep dissection, it can be difficult to delineate underlying muscles because these muscles have fibers that do not run in line with the trapezius, and some, like the rhomboid major, run nearly perpendicular to it.Electrocautery is useful while elevating the erector spinae muscles and tendons, as there is a robust blood supply in this region.The erector spinae muscle complex is relatively tight and adherent to the underlying ribs, which may make it difficult to achieve adequate visualization; therefore, at least 3 rib levels must be elevated to access a rib for reduction and instrumentation.Although internal rotation deformities are more common in this region, any external displacement of a fracture can lead to a muscle injury that can be utilized for access.During fracture reduction, it is critical to assess reduction of both the costovertebral joint and the costotransverse joint.Special attention must be given to contouring the implants because there are not any commercially available precontoured implants for this region at this time, and plating onto the spine remains an off-label use of any currently available implant.For the more challenging fracture patterns, the use of a right-angled power drill and screwdriver is recommended.Generally, the incision is utilized as previously described to provide access as far medial as the transverse process if needed. However, in cases in which this approach does not allow proper visualization with rib fracture-dislocations involving the posterior ribs or spine, a midline spinal incision can be utilized while working in combination with a spine surgeon.With fractures closer to the spine, it is recommended to have at least 2 cm between the rib head and tubercle in order to allow 2 plate holes to be positioned on the neck of the rib.If comminution exists and plating onto the transverse process is needed, several screws are required for stability.When measuring the length of screws to be placed in the transverse process, preoperative CT scans can be utilized.
CT = computed tomographyCWIS = Chest Wall Injury SocietyIVC = inferior vena cava.
Manes TJ
,DeGenova DT
,Taylor BC
,Patel JN
... -
《-》
Cell salvage for the management of postpartum haemorrhage.
Postpartum haemorrhage (PPH), defined as a blood loss of 500 mL or more within 24 hours of birth, is the leading global cause of maternal morbidity and mortality. Allogenic blood transfusions are a critical component of PPH management, yet are often unfeasible, particularly in resource-poor settings where maternal morbidity is highest. Autologous cell salvage in the management of PPH has been proposed to combat limitations in access to allogenic blood and potential transfusion-related risks. This review examines the benefits and harms of using cell salvage for pregnant women during birth.
To assess the benefits and harms of cell salvage when used during birth.
We searched the CENTRAL, MEDLINE, Ovid Embase, and Global Index Medicus databases and the ICTRP and ClinicalTrials.gov trials registers. We also carried out reference checking and citation searching, and contacted study authors to identify all relevant studies. The latest search date was 8 February 2024.
We included randomised controlled trials (RCTs) in pregnant women (24 weeks or more gestation) comparing use of cell salvage following caesarean or vaginal birth with routine care (defined as no cell salvage). We did not place any restrictions on mode of birth, ethnicity, race, socioeconomic status, education level, or place of residence.
Critical outcomes for this review were risk of allogenic blood transfusion, risk of transfusion-related adverse reactions, risk of haemorrhage, transfer to higher level of care, length of hospitalisation, length of operation, and risk of sepsis. Important outcomes were estimated blood loss, blood loss ≥ 500 mL, blood loss ≥ 1000 mL, use of additional uterotonics or tranexamic acid, maternal death, postpartum haemoglobin concentration, change in haemoglobin, major surgery including hysterectomy, future major surgery, end-organ dysfunction or failure, amniotic fluid embolism, side effects, clotting abnormalities, maternal experience/satisfaction, maternal well-being, and breastfeeding.
We assessed risk of bias using the Cochrane risk of bias tool (RoB 1) for each critical outcome from each RCT.
We conducted a meta-analysis for each outcome where data were available from more than one study using a random-effects model. If data could not be analysed using meta-analysis, we synthesised results narratively using the Synthesis Without Meta-analysis (SWiM) guidance. We used GRADE to assess the certainty of evidence for each outcome.
We included six RCTs with 3476 participants. All trials involved pregnant women having a caesarean birth. Three trials were conducted in high-income countries, and three were conducted in an upper-middle-income country.
Allogenic blood transfusion Intraoperative cell salvage at caesarean birth may reduce the need for allogenic transfusions received by participants, although the 95% confidence interval (CI) includes the possibility of an increase in effect. Low-certainty evidence from three studies found the risk of donor transfusions was possibly lower in participants with cell salvage (risk ratio (RR) 0.45, 95% CI 0.15 to 1.33; P = 0.15, I2 = 33%; 3 RCTs, 3115 women; low-certainty evidence). The absolute risk of transfusion was very low in the studies (4% in women not treated with cell salvage and 2% in women treated with cell salvage). Transfusion-related adverse reactions The evidence is very uncertain about the risk of transfusion-related adverse reactions in participants with intraoperative cell salvage (RR 0.48, 95% CI 0.09 to 2.62; P = 0.39; 4 RCTs, 3304 women; very low-certainty evidence). Haemorrhage Two studies reported risk of haemorrhage and found that there was probably no difference between arms (RR 0.88, 95% CI 0.67 to 1.15; P = 0.36, I² = 0%; 2 RCTs, 3077 women; moderate-certainty evidence). Length of hospitalisation The evidence is very uncertain about whether interoperative cell salvage at caesarean birth affects length of hospitalisation. Three studies reported length of hospitalisation (MD -2.02 days, 95% CI -4.73 to 0.70; P = 0.15, I2 = 100%; 3 RCTs, 3174 women; very low-certainty evidence). Length of operation Two studies reported on length of operation. However, meta-analysis was not possible due to statistical heterogeneity and divergence of study findings; the direction of effect could not be determined. We evaluated the evidence as very low certainty. Sepsis One study reported risk of sepsis, finding that there was possibly no difference between arms (RR 1.00, 95% CI 0.43 to 2.29; P = 0.99; 1 RCT, 2990 women; low-certainty evidence). Estimated blood loss Cell salvage at caesarean birth may reduce blood loss. Two studies reported that estimated blood loss was possibly lower in women who had cell salvage compared to those who did not (MD -113.59 mL, 95% CI -130.41 to -96.77; P < 0.00001, I2 = 0%; 2 RCTs, 246 women; low-certainty evidence). Postpartum haemoglobin concentration Cell salvage at caesarean birth may increase day one postpartum haemoglobin. Three studies reported day one postpartum haemoglobin levels (MD 6.14 g/L, 95% CI 1.62 to 10.65; P = 0.008, I2 = 97%; 3 RCTs, 3070 women; low-certainty evidence). Amniotic fluid embolism Three trials reported risk of amniotic fluid embolism and no cases were observed (n = 3226 women).
Cell salvage may reduce the need for allogenic blood transfusion, may reduce blood loss, and may increase day one postpartum haemoglobin in pregnant women having caesarean birth (low certainty). Cell salvage may make little to no difference to the risk of sepsis (low certainty) and probably makes little to no difference to the risk of haemorrhage (moderate certainty). The effect of cell salvage on risk of transfusion-related adverse reactions is very uncertain. The effect of cell salvage on the length of hospital stay was both clinically and statistically heterogenous, with a very low certainty of evidence. The effect of cell salvage on length of operation is divergent and meta-analysis was not possible due to significant statistical heterogeneity; the evidence is of very low certainty. No cases of amniotic fluid embolism were reported among the included trials. Studies in low- and middle-income settings are needed.
This review had no dedicated funding.
This review was registered with PROSPERO (CRD42024554204).
Dey T
,Brown D
,Cole MG
,Hill RA
,Chaplin M
,Huffstetler HE
,Curtis F
... -
《Cochrane Database of Systematic Reviews》
Unexpected placenta accreta spectrum in an unscarred uterus causing catastrophic post-partum hemorrhage: a case report and review of the literature.
Placenta accreta spectrum (PAS) disorder is a fatal condition responsible for obstetric haemorrhage, which contributes to increased feto-maternal morbidity and mortality. The main contributing factor is a scarred uterus, often from a previous cesarean delivery, myomectomy, or uterine instrumentation. The occurrence of PAS in an unscarred uterus is extremely rare, with only anecdotal cases reported so far in the literature. We document one such case of unexpected placenta increta without identifiable risk factors presenting with severe postpartum hemorrhage. The management is often challenging, especially in low-middle-income countries like India with limited access to healthcare, where most cases are identified only at the time of delivery.
We narrate a case of a 25-year-old woman of North Indian ethnicity, para 2 live 2, who presented to our emergency in shock with retained placenta and severe postpartum haemorrhage. She had undergone a normal vaginal delivery at 37 weeks and 2 days of pregnancy at a local hospital around 2 h before. The patient had not undergone antenatal checkups or sonography during her pregnancy. Manual removal of the placenta was attempted under anaesthesia, which was unsuccessful. So, keeping the diagnosis of the morbidly adherent placenta in mind and the deteriorating condition of the patient, an emergency laparotomy followed by a supracervical hysterectomy was performed after the conservative methods failed to control the haemorrhage. Simultaneously, she was given four units of packed red cells and fresh frozen plasma in a ratio of 1:1, along with vasopressors and fluid replacement therapy to attain hemodynamic stability. Post-operatively, the patient was shifted to the intensive care unit (ICU) for close monitoring. She was discharged after five days in satisfactory condition. A histopathological examination later on revealed placenta increta.
Although very rare, PAS in an unscarred uterus with no other known risk factors is associated with a significant rate of maternal morbidity and mortality. This case highlights the importance of screening for radiological signs of adherent placenta during prenatal visits, even in low-risk populations. Any patient suspected of PAS should be referred to a well-equipped centre for optimal care. Also, young obstetricians should be imparted skill-based training to manage such emergencies with a multidisciplinary team approach.
Garg P
,Semwal S
,Bansal R
《BMC Pregnancy and Childbirth》