HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF(V600E)-mutant microsatellite stable colorectal cancer.

来自 PUBMED

作者:

Sun ZShi MXia JLi XChen NWang HGao ZJia JYang PJi DGu J

展开

摘要:

B-Raf proto-oncogene, serine/threonine kinase (BRAF)V600E-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup. We first performed a large-scale drug screening using patient-derived organoid models and cell lines to pinpoint potential therapies. Subsequently, we investigated the synergistic effects of identified effective inhibitors and probed their cooperative mechanisms. Concurrently, we explored the immune characteristics of BRAFV600E MSS CRC using RNA sequencing and multiplex immunohistochemistry. Finally, we established a CT26 BRAFV637E mouse cell line and validated the efficacy of combining these inhibitors and programmed death 1 (PD-1) blockades in immunocompetent mice. Drug screening identified histone deacetylase (HDAC) inhibitor and mitogen-activated protein kinase kinase (MEK) inhibitor as significantly effective against BRAFV600E MSS CRC. Further research revealed that these two inhibitors have superior synergistic effects by comprehensively inhibiting the activation of the epidermal growth factor receptor, mitogen-activated protein kinase, and phosphoinositide 3-kinase-protein kinase B pathways and suppressing the key target homeobox C6 (HOXC6). HOXC6, overexpressed in BRAFV600E MSS CRC, regulates the MYC gene and contributes to treatment resistance, tumor growth, and metastasis. Moreover, the combination therapy demonstrated the ability to enhance antitumor immunity by synergistically upregulating the expression of immune activation-related genes, activating the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) pathway, and diminishing the tumor cells' DNA mismatch repair capacity. Notably, BRAFV600E MSS CRC was identified to exhibit a distinct immune microenvironment with increased PD-1+ cell infiltration and potential responsiveness to immunotherapy. Echoing the above findings, in vivo, HDAC and MEK inhibitors significantly improved PD-1 blockade efficacy, accompanied by increased CD8+ T-cell infiltration. Our findings indicate that combining HDAC inhibitor, MEK inhibitor, and PD-1 blockade is a potential strategy for treating BRAFV600E-mutant MSS CRC, warranting further investigation in clinical settings.

收起

展开

DOI:

10.1136/jitc-2024-010460

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

Journal for ImmunoTherapy of Cancer

影响因子:12.457

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读