Assessment of the safety and gut microbiota modulation ability of an infant formula containing Bifidobacterium animalis ssp. lactis CP-9 or Lactobacillus salivarius AP-32 and the effects of the formula on infant growth outcomes: insights from a four-month
Breast milk is a natural treasure for infants, and its microbiota contains a rich array of bacterial species. When breastfeeding is not possible, infant formula with probiotics can be used as a sole source or as a breast milk supplement. The main aim of this study was to evaluate the growth outcomes and tolerance of infants consuming an infant formula containing Bifidobacterium animalis ssp. lactis CP-9 (B. animalis CP-9) or Lactobacillus salivarius AP-32 (L. salivarius AP-32), which were isolated from breast milk and the guts of healthy infants. The safety of these strains in terms of antibiotic resistance and their ability to modulate the gut microbiota were also evaluated.
One hundred eighty healthy infants were included in this study and separated into three groups: the control group, the L. salivarius AP-32 group, and the B. animalis CP-9 group. In this clinical study, adverse events, growth effects, and the incidence of allergies and gastrointestinal disorders in infants consuming infant formula containing B. animalis CP-9 or L. salivarius AP-32 were evaluated. Finally, the impact of the probiotic infant formula on the gut microbiota was elucidated via next-generation sequencing (NGS) analysis.
The 4-month interventional study revealed that body weight, recumbent length, and head circumference were similar among the three groups. No adverse events related to the intervention were observed. The microbiota composition was more diverse on day 0 and became more uniform by month 4. B. animalis CP-9 and L. salivarius AP-32 were found to be susceptible to streptomycin, tetracycline, erythromycin, clindamycin, chloramphenicol, and ampicillin.
The use of infant formula containing B. animalis CP-9 and L. salivarius AP-32 was considered safe and well tolerated, with no adverse events observed during the study. While these strains showed low antibiotic resistance and no immediate concerns related to antibiotic resistance genes, further research is needed to comprehensively assess their long-term safety and efficacy and the potential risk of horizontal gene transfer in broader contexts.
The trial was registered with the US Library of Medicine (clinicaltrials.gov) with the number NCT03993301 on 20/06/2019.
Shen SP
,Lin HC
,Chen JF
,Wang HS
,Huang YY
,Hsia KC
,Lin JH
,Kuo YW
,Li CM
,Hsu YC
,Tsai SY
,Ho HH
... -
《BMC Pediatrics》
Icariin promoted ferroptosis by activating mitochondrial dysfunction to inhibit colorectal cancer and synergistically enhanced the efficacy of PD-1 inhibitors.
A controlled type of cell death called ferroptosis is linked to increased reactive oxygen species (ROS), lipid peroxidation, and iron buildup. Furthermore, evidence indicates that ferroptosis may act as an immunogenic form of cell death with potential physiological functions in tumors and immunosuppression. Inducing ferroptosis in tumor cells may have the potential to complement cancer immunotherapy strategies. The development of colorectal cancer (CRC) and the poor efficacy of immunotherapy are associated with the crosstalk of cellular ferroptosis. Currently, Icariin (ICA), the main bioactive component extracted from Epimedium, has been shown to inhibit a variety of cancers. However, the specific role and potential mechanism of ICA in regulating ferroptosis in CRC remains unclear.
The aim of this investigation was to clarify the mechanism underlying the anti-CRC cancer properties of ICA and how it induces ferroptosis to enhance immunotherapy.
To evaluate cell viability, the Cell Counting Kit-8 (CCK-8) test was utilized. The transwell test and the wound healing assay were used to assess cell migration. A subcutaneous graft tumor model was constructed with C57BL/6 mice using MC38 colorectal cancer cell lines. The inhibitory effect of ICA on CRC, ferroptosis level and immunomodulatory effects were detected by serum biochemical assay, cytokine assay, hematoxylin-eosin (H&E) staining, immunofluorescence staining, CyTOF mass spectrometry flow screening and Western blotting. Western blotting, proteomics, molecular docking and microscale thermophoresis (MST) were used to forecast and confirm ICA's binding and interaction with HMGA2, STAT3, and HIF-1α. Moreover, the levels of lipid peroxidation and ferroptosis were assessed through the use of the C11-BODIPY fluorescent probe, the FerroOrange fluorescent probe, the iron level, the malondialdehyde (MDA) and reduced glutathione (GSH) assay kit, and Western blotting analysis. To assess alterations in mitochondrial structure and membrane potential, transmission electron microscopy (TEM) and JC-1 immunofluorescence were employed.
It was demonstrated in the current study that ICA treatment inhibits CRC and enhances anti-PD-1 therapy efficacy by inciting ferroptosis. As shown in vitro, ICA inhibits CRC cell proliferation, migration, and apoptosis. As demonstrated in vivo, ICA has a dose-dependent tumor suppressor effect when combined with anti-PD-1, it can significantly inhibit tumor growth, increase the expression of serum TNF-α, IFN-γ, and granzyme B, and promote CD69+CD8+ T, CD69+CD8+Tem, CD69+CD8+Teff, TCRβ+CD8+ T, TCRβ+CD8+ T, TCRβ+CD8+Tem, TCRβ+CD8+Teff. The inhibitory effect of ICA on CRC was associated with the binding of HMGA2, STAT3, and HIF-1α proteins, which inhibited CRC by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), promoting the accumulation of iron (Fe2+), depletion of reduced glutathione (GSH), inhibiting SLC7A11 and GPX4 expressions, thereby inducing ferroptosis in CRC. As a consequence of ICA-induced ferroptosis, mitochondria are dysfunctional, with increased ROS production, membrane potential depolarization (MMP), and ATP production reduced. This process can be efficiently reversed by the mitochondria-targeted antioxidant Mito-Q. It is noteworthy that the ferroptosis inhibitor liproxstatin-1 (lip-1), anti-CD8, and anti-IFN-γ exhibited a significant inhibitory effect on the level of ferroptosis and antitumor capacity of ICA combined with anti-PD-1. This finding suggests that the antitumor immunopotentiating effect of ICA on anti-PD-1 is dependent on the secretion of IFN-γ-induced ferroptosis of CRC cells by the CD8+ T cell.
Our study represents the inaugural demonstration of the mechanism whereby ICA exerts anti-CRC effects and synergistically enhances the efficacy of anti-PD-1, inducing mitochondrial damage and leading to ferroptosis. ICA promotes ferroptosis of CRC cells by inducing mitochondrial dysfunction, and ICA combined with anti-PD-1 significantly promotes CD69, TCRβ signalling, activates effector CD8+ T cells to secrete IFN-γ, and achieves immunopotentiation by promoting ferroptosis of CRC cells, thus inhibiting CRC development. This study is built upon existing research into the pharmacodynamic mechanisms of ICA in the context of CRC, and offers a novel therapeutic approach in addressing the issue of CRC immunotherapy potentiation.
Haoyue W
,Kexiang S
,Shan TW
,Jiamin G
,Luyun Y
,Junkai W
,Wanli D
... -
《-》
Modified Jiaoqi Powder enhances epithelial autophagy against TNF-triggered apoptosis in chronic ulcerative colitis.
A vicious cycle of dysregulated intestinal epithelial cell death, intestinal barrier defect, and subsequent inflammation response is core to chronic ulcerative colitis (UC). Modified Jiaoqi Powder (MJQP), a traditional Chinese medicine formula, has been clinically applied to treat chronic relapsing and chronic persistent types of UC. Nevertheless, the underlying mechanisms of MJQP in chronic UC remains unknown.
The present study aimed to demonstrate the favorable effects and potential molecular mechanisms of MJQP in chronic UC.
The chemical components of MJQP and MJQP drug serum were identified by LC-MS/MS. The curative effects of MJQP were evaluated in a well-established DSS-induced chronic UC mice model by measuring body weight, colon length, disease activity index (DAI) and histological scores. Serum cytokines, including interleukin (IL)-1β, IL-12, IL-13, IL-4, tumor necrosis factor-alpha (TNF-α), and IFN-γ were measured using enzyme-linked immunosorbent assay. Western blotting, immunofluorescence, and MTT assay were used to analyze the effects of MJQP on colonic barrier function in chronic UC mice and human epithelial cell lines. TUNEL assay, western blotting, and flow cytometry were used to examine the related apoptosis indicators. An electron microscope was used to observe autophagosomes and autolysosomes, while western blotting and immunofluorescence were used to detect autophagy-associated proteins. Network pharmacology was used to predict potential targets and pathways of MJQP in UC. Finally, the TNF pathway-related proteins were detected by immunohistochemistry and western blotting.
MJQP administration prevented the UC progression, as evidenced by faster weight gain, longer colon length, lower histological scores and DAI, and up-/down- regulation of inflammatory factors. The expression of tight junction proteins, ki67, and E-cadherin increased dose-dependently after MJQP intervention. Moreover, MJQP treatment promoted the viability of NCM460 and Caco2 cells in a concentration-dependent manner. MJQP dose-dependently decreased the proportion of TUNEL-positive cells and attenuated the pro-apoptotic proteins cleaved-caspase 8 and cleaved-caspase 3 in colonic tissues. Flow cytometry also showed that MJQP dose-dependently decreased the apoptotic cell population of LPS-induced NCM460 and Caco2 cells. Electron microscopy revealed that autophagosomes and autolysosomes were significantly improved in the MJQP-treated groups. Additionally, autophagy-related proteins were significantly expressed after MJQP treatment. Network pharmacological analysis predicted that MJQP may alleviate chronic UC by promoting intestinal epithelial cell proliferation and affecting TNF-related signaling pathways. As anticipated, the TNF pathway-associated proteins were attenuated dose-dependently in colonic tissues after MJQP treatment.
These results provide novel therapeutic strategies indicating that MJQP may be a promising candidate treatment for chronic UC by promoting epithelial barrier restitution by enhancing epithelial autophagy against TNF-mediated apoptosis.
Liu W
,Yan X
,An J
,Wang X
,Mi H
,Liu F
... -
《-》