Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

来自 PUBMED

作者:

Nehra GMaloney BJSmith RRChumboatong WAbner ELNelson PTBauer BHartz AMS

展开

摘要:

Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment. We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC. Plasma samples were obtained within 2 years of autopsy. Aβ40, Aβ42, and tau levels in brain tissue samples were quantified by ELISA. Cortical brain sections were cleared using the X-CLARITY™ system and immunostained for neurovascular unit-related proteins. Brain slices were then imaged using confocal microscopy and analyzed for microvascular diameters and immunoreactivity coverage using Fiji/ImageJ. Isolated human brain microvessels were assayed for tight-junction protein expression using the JESS™ automated Western blot system. S100 calcium-binding protein B (S100β), matrix metalloproteinase (MMP)-2, MMP-9, and neuron-specific enolase (NSE) levels in plasma were quantified by ELISA. All outcomes were assessed for linear associations with global cognitive function (MMSE, CDR) and cerebral atrophy scores by Pearson, polyserial, or polychoric correlation, as appropriate, along with generalized linear modeling or generalized linear mixed-level modeling. As expected, we detected elevated Aβ and tau pathology in brain tissue sections from AD patients compared to CNI. However, we found no differences in microvascular diameters in cleared AD and CNI brain tissue sections. We also observed no differences in claudin-5 protein levels in capillaries isolated from AD and CNI tissue samples. Plasma biomarker analysis showed that AD patients had 12.4-fold higher S100β plasma levels, twofold lower NSE plasma levels, 2.4-fold higher MMP-9 plasma levels, and 1.2-fold lower MMP-2 plasma levels than CNI. Data analysis revealed that elevated S100β plasma levels were predictive of AD pathology and cognitive impairment. Our data suggest that among different markers relevant to barrier dysfunction, plasma S100β is the most promising diagnostic biomarker for ADNC. Further investigation is necessary to assess how plasma S100β levels relate to these changes and whether they may predict clinical outcomes, particularly in the prodromal and early stages of AD.

收起

展开

DOI:

10.1186/s12987-024-00615-8

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

Fluids and Barriers of the CNS

影响因子:6.954

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读