Far Posterior Approach for Rib Fracture Fixation: Surgical Technique and Tips.
The present video article describes the far posterior or paraspinal approach to posterior rib fractures. This approach is utilized to optimize visualization intraoperatively in cases of far-posterior rib fractures. This technique is also muscle-sparing, and muscle-sparing posterolateral, axillary, and anterior approaches have been shown to return up to 95% of periscapular strength by 6 months postoperatively1.
Like most fractures, the skin incision depends on the fracture position. The vertical incision is made either just medial to a line equidistant between the palpable spinous processes and medial scapular border or directly centered over the fracture line in this region. The incision and superficial dissection must be extended cranially and caudally, approximately 1 or 2 rib levels past the planned levels of instrumentation, in order to allow muscle elevation and soft-tissue retraction. Superficial dissection reveals the trapezius muscle, with its fibers coursing from inferomedial to superolateral caudal to the scapular spine, and generally coursing transversely above this level. The trapezius is split in line with its fibers (or elevated proximally at the caudal-most surface), and the underlying layer will depend on the location of the incision. The rhomboid minor muscle overlies ribs 1 and 2, the rhomboid major muscle overlies ribs 3 to 7, and the latissimus dorsi overlies the remaining rib levels. To avoid muscle transection, the underlying muscle is also split in line with its fibers. Next, the thoracolumbar fascia is encountered and sharply incised, revealing the erector spinae muscles, which comprise the spinalis thoracis, longissimus thoracis, and iliocostalis thoracis muscles. These muscles and their tendons must be sharply elevated from lateral to midline; electrocautery is useful for this because there is a robust blood supply in this region. Medially, while retracting the paraspinal musculature, visualization with this approach can extend to the head and neck of the rib, and even to the spine. Following deep dissection, the fractures are now visualized. During fracture reduction, it is critical to assess reduction of both the costovertebral joint and the costotransverse joint. With fractures closer to the spine, it is recommended to have at least 2 cm between the rib head and tubercle in order to allow 2 plate holes to be positioned on the neck of the rib; if comminution exists and plating onto the transverse process is needed, several screws are required here for stability as well. For appropriate stability if plating onto the spine is not required, a minimum of 3 locking screws on each side of the fracture are recommended. Contouring of the plates to match the curvature of the rib and to allow for proper apposition may be required with posterior rib fractures. Screws must be placed perpendicular to the rib surface. Following operative stabilization of the rib fractures, a layered closure is performed, and a soft dressing is applied.
Nonoperative alternatives include non-opioid and opioid medications as well as corticosteroid injections for pain control. Supportive mechanical ventilation and physiotherapy breathing exercises can also be implemented as needed. Operative alternatives include open reduction and internal fixation utilizing conventional locking plates and screws.
Rib fractures are often treated nonoperatively when nondisplaced because of the surrounding soft-tissue support2,3. According to Chest Wall Injury Society guidelines, contraindications to surgical fixation of rib fractures include patients requiring ongoing resuscitation; rib fractures involving ribs 1, 2, 11, or 12, which are relative contraindications; severe traumatic brain injury; and acute myocardial infarction. Patient age of <18 years is also a relative contraindication for the operative treatment of rib fractures. The current literature does not recommend surgical fixation in this age group because these fractures typically heal as the patient ages; however, fracture-dislocations may require the use of instrumentation to prevent displacement. Currently, the U.S. Food and Drug Administration does not approve most plating systems for patients <18 years old4. In certain cases, including those with substantial displacement, persistent respiratory distress, pain, or fracture nonunion, stabilization with open reduction and internal fixation may be appropriate5-7. In cases of flail chest injuries, surgery is often indicated6. Flail chest injuries have been noted in the literature to have an incidence of approximately 150 cases per 100,000 injuries and have been shown to carry a mortality rate of up to 33%8,9. Surgical treatment of rib fractures has been shown to be associated with a decreased hospital length of stay and mortality rate in patients with major trauma1.
Expected outcomes of this procedure include low complication rates, decreased hospital and intensive care unit length of stay, and reduced mechanical ventilation time10,11. However, as with any procedure, there are also risks involved, including iatrogenic lung injury from long screws or an aortic or inferior vena cava injury with aggressive manipulation of displaced fractured fragments, especially on the left side of the body. During open reduction, there is also a risk of injuring the neurovascular bundle. Tanaka et al. demonstrated a significant reduction in the rate of postoperative pneumonia in their operative group (22%) compared with their nonoperative group (90%)12. Schuette et al. demonstrated a 23% rate of postoperative pneumonia, 0% mortality at 1 year, an average of 6.2 days in the intensive care unit, an average total hospital length of stay of 17.3 days, and an average total ventilator time of 4 days in the operative group10. Prins et al. reported a significantly lower incidence of pneumonia in operative (24%) versus nonoperative patients (47.3%; p = 0.033), as well as a significantly lower 30-day mortality rate (0% versus 17.7%; p = 0.018)3. This procedure utilizes a muscle-sparing technique, which has demonstrated successful results in the literature on the use of the posterolateral, axillary, and anterior approaches, returning up to 95% of periscapular strength, compared with the uninjured shoulder, by 6 months postoperatively1. The use of a muscle-sparing technique with the far-posterior approach represents a topic that requires further study in order to compare the results with the successful results previously shown with other approaches.
The ipsilateral extremity can be prepared into the field to allow its intraoperative manipulation in order to achieve scapulothoracic motion and improved subscapular access.For costovertebral fracture-dislocations, the vertical incision line is made just medial to a line equidistant between the palpable spinous processes and medial scapular border.Lateral decubitus positioning can be utilized to allow for simultaneous access to fractures that extend more laterally and warrant a posterolateral approach; however, it is generally more difficult to access the fracture sites near the spine with this approach.This muscle-sparing technique is recommended to optimize postoperative periscapular strength, as previously demonstrated with other approaches.Incision and superficial dissection must be extended cranially and caudally approximately 1 or 2 rib levels past the planned levels of instrumentation in order to allow muscle elevation and soft-tissue retraction.To avoid muscle transection during surgical dissection, the underlying muscle is split in line with its fibers.During deep dissection, it can be difficult to delineate underlying muscles because these muscles have fibers that do not run in line with the trapezius, and some, like the rhomboid major, run nearly perpendicular to it.Electrocautery is useful while elevating the erector spinae muscles and tendons, as there is a robust blood supply in this region.The erector spinae muscle complex is relatively tight and adherent to the underlying ribs, which may make it difficult to achieve adequate visualization; therefore, at least 3 rib levels must be elevated to access a rib for reduction and instrumentation.Although internal rotation deformities are more common in this region, any external displacement of a fracture can lead to a muscle injury that can be utilized for access.During fracture reduction, it is critical to assess reduction of both the costovertebral joint and the costotransverse joint.Special attention must be given to contouring the implants because there are not any commercially available precontoured implants for this region at this time, and plating onto the spine remains an off-label use of any currently available implant.For the more challenging fracture patterns, the use of a right-angled power drill and screwdriver is recommended.Generally, the incision is utilized as previously described to provide access as far medial as the transverse process if needed. However, in cases in which this approach does not allow proper visualization with rib fracture-dislocations involving the posterior ribs or spine, a midline spinal incision can be utilized while working in combination with a spine surgeon.With fractures closer to the spine, it is recommended to have at least 2 cm between the rib head and tubercle in order to allow 2 plate holes to be positioned on the neck of the rib.If comminution exists and plating onto the transverse process is needed, several screws are required for stability.When measuring the length of screws to be placed in the transverse process, preoperative CT scans can be utilized.
CT = computed tomographyCWIS = Chest Wall Injury SocietyIVC = inferior vena cava.
Manes TJ
,DeGenova DT
,Taylor BC
,Patel JN
... -
《-》
AGA Clinical Practice Update on Screening and Surveillance in Individuals at Increased Risk for Gastric Cancer in the United States: Expert Review.
Gastric cancer (GC) is a leading cause of preventable cancer and mortality in certain US populations. The most impactful way to reduce GC mortality is via primary prevention, namely Helicobacter pylori eradication, and secondary prevention, namely endoscopic screening and surveillance of precancerous conditions, such as gastric intestinal metaplasia (GIM). An emerging body of evidence supports the possible impact of these strategies on GC incidence and mortality in identifiable high-risk populations in the United States. Accordingly, the primary objective of this American Gastroenterological Association (AGA) Clinical Practice Update (CPU) Expert Review is to provide best practice advice for primary and secondary prevention of GC in the context of current clinical practice and evidence in the United States.
This CPU Expert Review was commissioned and approved by the AGA Institute CPU Committee and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership, and underwent internal peer review by the CPU Committee and external peer review through standard procedures of Gastroenterology. These best practice advice statements were drawn from a review of the published literature and expert opinion. Because systematic reviews were not performed, these best practice advice statements do not carry formal ratings regarding the quality of evidence or strength of the presented considerations. Best Practice Advice Statements BEST PRACTICE ADVICE 1: There are identifiable high-risk groups in the United States who should be considered for GC screening. These include first-generation immigrants from high-incidence GC regions and possibly other non-White racial and ethnic groups, those with a family history of GC in a first-degree relative, and individuals with certain hereditary gastrointestinal polyposis or hereditary cancer syndromes. BEST PRACTICE ADVICE 2: Endoscopy is the best test for screening or surveillance in individuals at increased risk for GC. Endoscopy enables direct visualization to endoscopically stage the mucosa and identify areas concerning for neoplasia, as well as enables biopsies for further histologic examination and mucosal staging. Both endoscopic and histologic staging are key for risk stratification and determining whether ongoing surveillance is indicated and at what interval. BEST PRACTICE ADVICE 3: High-quality upper endoscopy for the detection of premalignant and malignant gastric lesions should include the use of a high-definition white-light endoscopy system with image enhancement, gastric mucosal cleansing, and insufflation to achieve optimal mucosal visualization, in addition to adequate visual inspection time, photodocumentation, and use of a systematic biopsy protocol for mucosal staging when appropriate. BEST PRACTICE ADVICE 4: H pylori eradication is essential and serves as an adjunct to endoscopic screening and surveillance for primary and secondary prevention of GC. Opportunistic screening for H pylori infection should be considered in individuals deemed to be at increased risk for GC (refer to Best Practice Advice 1). Screening for H pylori infection in adult household members of individuals who test positive for H pylori (so-called "familial-based testing") should also be considered. BEST PRACTICE ADVICE 5: In individuals with suspected gastric atrophy with or without intestinal metaplasia, gastric biopsies should be obtained according to a systematic protocol (eg, updated Sydney System) to enable histologic confirmation and staging. A minimum of 5 total biopsies should be obtained, with samples from the antrum/incisura and corpus placed in separately labeled jars (eg, jar 1, "antrum/incisura" and jar 2, "corpus"). Any suspicious areas should be described and biopsied separately. BEST PRACTICE ADVICE 6: GIM and dysplasia are endoscopically detectable. However, these findings often go undiagnosed when endoscopists are unfamiliar with the characteristic visual features; accordingly, there is an unmet need for improved training, especially in the United States. Artificial intelligence tools appear promising for the detection of early gastric neoplasia in the adequately visualized stomach, but data are too preliminary to recommend routine use. BEST PRACTICE ADVICE 7: Endoscopists should work with their local pathologists to achieve consensus for consistent documentation of histologic risk-stratification parameters when atrophic gastritis with or without metaplasia is diagnosed. At a minimum, the presence or absence of H pylori infection, severity of atrophy and/or metaplasia, and histologic subtyping of GIM, if applicable, should be documented to inform clinical decision making. BEST PRACTICE ADVICE 8: If the index screening endoscopy performed in an individual at increased risk for GC (refer to Best Practice Advice 1) does not identify atrophy, GIM, or neoplasia, then the decision to continue screening should be based on that individual's risk factors and preferences. If the individual has a family history of GC or multiple risk factors for GC, then ongoing screening should be considered. The optimal screening intervals in such scenarios are not well defined. BEST PRACTICE ADVICE 9: Endoscopists should ensure that all individuals with confirmed gastric atrophy with or without GIM undergo risk stratification. Individuals with severe atrophic gastritis and/or multifocal or incomplete GIM are likely to benefit from endoscopic surveillance, particularly if they have other risk factors for GC (eg, family history). Endoscopic surveillance should be considered every 3 years; however, intervals are not well defined and shorter intervals may be advisable in those with multiple risk factors, such as severe GIM that is anatomically extensive. BEST PRACTICE ADVICE 10: Indefinite and low-grade dysplasia can be difficult to reproducibly identify by endoscopy and accurately diagnose on histopathology. Accordingly, all dysplasia should be confirmed by an experienced gastrointestinal pathologist, and clinicians should refer patients with visible or nonvisible dysplasia to an endoscopist or center with expertise in the diagnosis and management of gastric neoplasia. Individuals with indefinite or low-grade dysplasia who are infected with H pylori should be treated and have eradication confirmed, followed by repeat endoscopy and biopsies by an experienced endoscopist, as visual and histologic discernment may improve once inflammation subsides. BEST PRACTICE ADVICE 11: Individuals with suspected high-grade dysplasia or early GC should undergo endoscopic submucosal dissection with the goal of en bloc, R0 resection to enable accurate pathologic staging with curative intent. Eradication of active H pylori infection is essential, but should not delay endoscopic intervention. Endoscopic submucosal dissection should be performed at a center with endoscopic and pathologic expertise. BEST PRACTICE ADVICE 12: Individuals with a history of successfully resected gastric dysplasia or cancer require ongoing endoscopic surveillance. Suggested surveillance intervals exist, but additional data are required to refine surveillance recommendations, particularly in the United States. BEST PRACTICE ADVICE 13: Type I gastric carcinoids in individuals with atrophic gastritis are typically indolent, especially if <1 cm. Endoscopists may consider resecting gastric carcinoids <1 cm and should endoscopically resect lesions measuring 1-2 cm. Individuals with type I gastric carcinoids >2 cm should undergo cross-sectional imaging and be referred for surgical resection, given the risk of metastasis. Individuals with type I gastric carcinoids should undergo surveillance, but the intervals are not well defined. BEST PRACTICE ADVICE 14: In general, only individuals who are fit for endoscopic or potentially surgical treatment should be screened for GC and continued surveillance of premalignant gastric conditions. If a person is no longer fit for endoscopic or surgical treatment, then screening and surveillance should be stopped. BEST PRACTICE ADVICE 15: To achieve health equity, a personalized approach should be taken to assess an individual's risk for GC to determine whether screening and surveillance should be pursued. In conjunction, modifiable risk factors for GC should be distinctly addressed, as most of these risk factors disproportionately impact people at high risk for GC and represent health care disparities.
Shah SC
,Wang AY
,Wallace MB
,Hwang JH
... -
《-》