Exploring prospects, hurdles, and road ahead for generative artificial intelligence in orthopedic education and training.

来自 PUBMED

作者:

Gupta NKhatri KMalik YLakhani AKanwal AAggarwal SDahuja A

展开

摘要:

Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory. A review of recent literature was conducted to evaluate the current applications, identify potential benefits, and outline limitations of integrating generative AI in orthopedic education. Key findings indicate that generative AI holds substantial promise in enhancing orthopedic training through its various applications such as providing real-time explanations, adaptive learning materials tailored to individual student's specific needs, and immersive virtual simulations. However, despite its potential, the integration of generative AI into orthopedic education faces significant issues such as accuracy, bias, inconsistent outputs, ethical and regulatory concerns and the critical need for human oversight. Although generative AI models such as ChatGPT and others have shown impressive capabilities, their current performance on orthopedic exams remains suboptimal, highlighting the need for further development to match the complexity of clinical reasoning and knowledge application. Future research should focus on addressing these challenges through ongoing research, optimizing generative AI models for medical content, exploring best practices for ethical AI usage, curriculum integration and evaluating the long-term impact of these technologies on learning outcomes. By expanding AI's knowledge base, refining its ability to interpret clinical images, and ensuring reliable, unbiased outputs, generative AI holds the potential to revolutionize orthopedic education. This work aims to provides a framework for incorporating generative AI into orthopedic curricula to create a more effective, engaging, and adaptive learning environment for future orthopedic practitioners.

收起

展开

DOI:

10.1186/s12909-024-06592-8

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

BMC Medical Education

影响因子:3.26

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读