Regulatory factor X-5/SCL/TAL1 interruption site axis promotes aerobic glycolysis and hepatocellular carcinoma cell stemness.

来自 PUBMED

作者:

Zhang ZZWang ZMZhang HWGong YXSun HRZhang W

展开

摘要:

The incidence and development of various tumors, such as hepatocellular carcinoma (HCC), are linked to tumor stem cells. Although research has revealed how important SCL/TAL1 interruption site (STIL) is in many human tumors, the impact of STIL on HCC stem cells is poorly understood. This study aimed to examine the regulatory mechanisms and the function of STIL in the stemness of HCC tumor cells. Bioinformatics analysis was applied to determine the STIL and regulatory factor X-5 (RFX5) expression in HCC tissues. Immunohistochemistry (IHC) was used to detect the expression of STIL and RFX5 in HCC tissues. Quantitative real-time polymerase chain reaction was utilized to measure the STIL and RFX5 expression levels in HCC cells. The viability of the cells was assessed by the Cell Counting Kit-8 assay. The sphere formation assay was used to evaluate the sphere-forming capacity. The expression levels of the stem cell markers SOX2, Oct-4, CD133, CD44, the glycolysis-related proteins LDHA, HK2, AKT, p-AKT, and β-catenin were assessed by Western blot. Lactate production, oxygen consumption rate, and extracellular acidification rate were measured to assess the glycolytic capacity of HCC cells. Chromatin immunoprecipitation and dual-luciferase experiments were performed to validate the connection between RFX5 and STIL. Bioinformatics analysis determined that STIL exhibited high expression in HCC tissues and was enriched in the glycolysis pathway. In addition, the expression of glycolysis marker genes was positively correlated with STIL expression. Cell experiments verified that the activation of the glycolysis pathway by overexpression of STIL promoted stemness in HCC. Molecular experiments also revealed the binding relationship between STIL and RFX5. IHC detected high expression of STIL and RFX5 in HCC tissues. Cell functional experiments revealed that RFX5 could influence the HCC cells stemness by activating the STIL transcription via the glycolysis pathway. This study identified a novel role for the RFX5/STIL axis in HCC progression, which may offer treatment targets for HCC.

收起

展开

DOI:

10.1002/kjm2.12922

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(38)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读