-
Short-term follow-up of single-port thoracoscopic rib fracture reduction and internal fixation for the treatment of multiple rib fractures.
The objective of this study was to evaluate the short-term outcomes of single-port thoracoscopic rib fracture reduction and internal fixation for the treatment of multiple rib fractures.
This study included 149 patients with multiple rib fractures admitted to the Second People's Hospital Affiliated with Fujian University of Chinese Medicine between June 2021 and April 2024. The patients were divided into two groups based on the surgical method. The study group, consisting of 84 cases, underwent rib fracture reduction using a single-port thoracoscopy and internal fixation with a memory alloy reverse rib embrace device. The control group, consisting of 65 cases, underwent traditional open surgery for rib fracture internal fixation. Perioperative and follow-up data were collected and analyzed to assess incision length, total operation time, intraoperative blood loss, number of memory alloy embrasures placed, placement success rate, drainage tube placement time, time to mobilization, total hospitalization duration, total cost, preoperative and postoperative pain levels, postoperative complications, and rib CT results three months postoperatively.
There was no statistically significant difference in general conditions between the study group and the control group. All 149 patients successfully completed the surgery, with 3 to 10 intrathoracic memory alloy embrace devices placed in each patient, achieving a 100% success rate. Compared to the control group, the study group showed significant improvements in incision length (3.5 ± 0.6 vs. 6.5±1.6 cm), intraoperative blood loss (92.5 ± 15.1 vs. 113 ± 18.2 ml), drainage tube placement time (75.4 ± 13.1 vs. 90.6 ± 15.4 h), mobilization time (2.9 ± 1.1 vs. 3.3 ± 1.3 days), and hospital stay (10.8 ± 2.7 vs. 12 ± 3.5 days), with differences being statistically significant (P < 0.05). In terms of preoperative Visual Analogue Scale (VAS) pain scores, the study group had a significantly lower score on the first postoperative day compared to the control group (3.9 ± 1.1 vs. 4.5 ± 1.4, P < 0.05). A follow-up CT and 3D reconstruction at 3 months post-surgery showed that all patients had securely fixed plates, with the study group demonstrating a higher rate of excellent fracture healing (94% vs. 83.1%), which was statistically significant (P < 0.05).
The use of a memory alloy reverse rib embrasure device for intrathoracic rib fracture fixation via single-port thoracoscopic surgery is safe and reliable. This method demonstrates a high success rate of internal fixation, excellent clinical fracture healing, and advantages such as minimal trauma, rapid recovery, and the simultaneous treatment of other intrathoracic conditions. It significantly reduces postoperative pain and enhances the quality of life.
Lin ZW
,Long JT
,Lin WK
《-》
-
Far Posterior Approach for Rib Fracture Fixation: Surgical Technique and Tips.
The present video article describes the far posterior or paraspinal approach to posterior rib fractures. This approach is utilized to optimize visualization intraoperatively in cases of far-posterior rib fractures. This technique is also muscle-sparing, and muscle-sparing posterolateral, axillary, and anterior approaches have been shown to return up to 95% of periscapular strength by 6 months postoperatively1.
Like most fractures, the skin incision depends on the fracture position. The vertical incision is made either just medial to a line equidistant between the palpable spinous processes and medial scapular border or directly centered over the fracture line in this region. The incision and superficial dissection must be extended cranially and caudally, approximately 1 or 2 rib levels past the planned levels of instrumentation, in order to allow muscle elevation and soft-tissue retraction. Superficial dissection reveals the trapezius muscle, with its fibers coursing from inferomedial to superolateral caudal to the scapular spine, and generally coursing transversely above this level. The trapezius is split in line with its fibers (or elevated proximally at the caudal-most surface), and the underlying layer will depend on the location of the incision. The rhomboid minor muscle overlies ribs 1 and 2, the rhomboid major muscle overlies ribs 3 to 7, and the latissimus dorsi overlies the remaining rib levels. To avoid muscle transection, the underlying muscle is also split in line with its fibers. Next, the thoracolumbar fascia is encountered and sharply incised, revealing the erector spinae muscles, which comprise the spinalis thoracis, longissimus thoracis, and iliocostalis thoracis muscles. These muscles and their tendons must be sharply elevated from lateral to midline; electrocautery is useful for this because there is a robust blood supply in this region. Medially, while retracting the paraspinal musculature, visualization with this approach can extend to the head and neck of the rib, and even to the spine. Following deep dissection, the fractures are now visualized. During fracture reduction, it is critical to assess reduction of both the costovertebral joint and the costotransverse joint. With fractures closer to the spine, it is recommended to have at least 2 cm between the rib head and tubercle in order to allow 2 plate holes to be positioned on the neck of the rib; if comminution exists and plating onto the transverse process is needed, several screws are required here for stability as well. For appropriate stability if plating onto the spine is not required, a minimum of 3 locking screws on each side of the fracture are recommended. Contouring of the plates to match the curvature of the rib and to allow for proper apposition may be required with posterior rib fractures. Screws must be placed perpendicular to the rib surface. Following operative stabilization of the rib fractures, a layered closure is performed, and a soft dressing is applied.
Nonoperative alternatives include non-opioid and opioid medications as well as corticosteroid injections for pain control. Supportive mechanical ventilation and physiotherapy breathing exercises can also be implemented as needed. Operative alternatives include open reduction and internal fixation utilizing conventional locking plates and screws.
Rib fractures are often treated nonoperatively when nondisplaced because of the surrounding soft-tissue support2,3. According to Chest Wall Injury Society guidelines, contraindications to surgical fixation of rib fractures include patients requiring ongoing resuscitation; rib fractures involving ribs 1, 2, 11, or 12, which are relative contraindications; severe traumatic brain injury; and acute myocardial infarction. Patient age of <18 years is also a relative contraindication for the operative treatment of rib fractures. The current literature does not recommend surgical fixation in this age group because these fractures typically heal as the patient ages; however, fracture-dislocations may require the use of instrumentation to prevent displacement. Currently, the U.S. Food and Drug Administration does not approve most plating systems for patients <18 years old4. In certain cases, including those with substantial displacement, persistent respiratory distress, pain, or fracture nonunion, stabilization with open reduction and internal fixation may be appropriate5-7. In cases of flail chest injuries, surgery is often indicated6. Flail chest injuries have been noted in the literature to have an incidence of approximately 150 cases per 100,000 injuries and have been shown to carry a mortality rate of up to 33%8,9. Surgical treatment of rib fractures has been shown to be associated with a decreased hospital length of stay and mortality rate in patients with major trauma1.
Expected outcomes of this procedure include low complication rates, decreased hospital and intensive care unit length of stay, and reduced mechanical ventilation time10,11. However, as with any procedure, there are also risks involved, including iatrogenic lung injury from long screws or an aortic or inferior vena cava injury with aggressive manipulation of displaced fractured fragments, especially on the left side of the body. During open reduction, there is also a risk of injuring the neurovascular bundle. Tanaka et al. demonstrated a significant reduction in the rate of postoperative pneumonia in their operative group (22%) compared with their nonoperative group (90%)12. Schuette et al. demonstrated a 23% rate of postoperative pneumonia, 0% mortality at 1 year, an average of 6.2 days in the intensive care unit, an average total hospital length of stay of 17.3 days, and an average total ventilator time of 4 days in the operative group10. Prins et al. reported a significantly lower incidence of pneumonia in operative (24%) versus nonoperative patients (47.3%; p = 0.033), as well as a significantly lower 30-day mortality rate (0% versus 17.7%; p = 0.018)3. This procedure utilizes a muscle-sparing technique, which has demonstrated successful results in the literature on the use of the posterolateral, axillary, and anterior approaches, returning up to 95% of periscapular strength, compared with the uninjured shoulder, by 6 months postoperatively1. The use of a muscle-sparing technique with the far-posterior approach represents a topic that requires further study in order to compare the results with the successful results previously shown with other approaches.
The ipsilateral extremity can be prepared into the field to allow its intraoperative manipulation in order to achieve scapulothoracic motion and improved subscapular access.For costovertebral fracture-dislocations, the vertical incision line is made just medial to a line equidistant between the palpable spinous processes and medial scapular border.Lateral decubitus positioning can be utilized to allow for simultaneous access to fractures that extend more laterally and warrant a posterolateral approach; however, it is generally more difficult to access the fracture sites near the spine with this approach.This muscle-sparing technique is recommended to optimize postoperative periscapular strength, as previously demonstrated with other approaches.Incision and superficial dissection must be extended cranially and caudally approximately 1 or 2 rib levels past the planned levels of instrumentation in order to allow muscle elevation and soft-tissue retraction.To avoid muscle transection during surgical dissection, the underlying muscle is split in line with its fibers.During deep dissection, it can be difficult to delineate underlying muscles because these muscles have fibers that do not run in line with the trapezius, and some, like the rhomboid major, run nearly perpendicular to it.Electrocautery is useful while elevating the erector spinae muscles and tendons, as there is a robust blood supply in this region.The erector spinae muscle complex is relatively tight and adherent to the underlying ribs, which may make it difficult to achieve adequate visualization; therefore, at least 3 rib levels must be elevated to access a rib for reduction and instrumentation.Although internal rotation deformities are more common in this region, any external displacement of a fracture can lead to a muscle injury that can be utilized for access.During fracture reduction, it is critical to assess reduction of both the costovertebral joint and the costotransverse joint.Special attention must be given to contouring the implants because there are not any commercially available precontoured implants for this region at this time, and plating onto the spine remains an off-label use of any currently available implant.For the more challenging fracture patterns, the use of a right-angled power drill and screwdriver is recommended.Generally, the incision is utilized as previously described to provide access as far medial as the transverse process if needed. However, in cases in which this approach does not allow proper visualization with rib fracture-dislocations involving the posterior ribs or spine, a midline spinal incision can be utilized while working in combination with a spine surgeon.With fractures closer to the spine, it is recommended to have at least 2 cm between the rib head and tubercle in order to allow 2 plate holes to be positioned on the neck of the rib.If comminution exists and plating onto the transverse process is needed, several screws are required for stability.When measuring the length of screws to be placed in the transverse process, preoperative CT scans can be utilized.
CT = computed tomographyCWIS = Chest Wall Injury SocietyIVC = inferior vena cava.
Manes TJ
,DeGenova DT
,Taylor BC
,Patel JN
... -
《-》
-
Ultrasound and shockwave therapy for acute fractures in adults.
The morbidity and socioeconomic costs of fractures are considerable. The length of time to healing is an important factor in determining a person's recovery after a fracture. Ultrasound may have a therapeutic role in reducing the time to union after fracture by stimulating osteoblasts and other bone-forming proteins. This is an update of a review previously published in February 2014. OBJECTIVES: To assess the effects of low-intensity ultrasound (LIPUS), high-intensity focused ultrasound (HIFUS) and extracorporeal shockwave therapies (ECSW) as part of the treatment of acute fractures in adults. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase (1980 to March 2022), Orthopaedic Proceedings, trial registers and reference lists of articles.
We included randomised controlled trials (RCTs) and quasi-RCTs including participants over 18 years of age with acute fractures (complete or stress fractures) treated with either LIPUS, HIFUS or ECSW versus a control or placebo-control.
We used standard methodology expected by Cochrane. We collected data for the following critical outcomes: participant-reported quality of life, quantitative functional improvement, time to return to normal activities, time to fracture union, pain, delayed or non-union of fracture. We also collected data for treatment-related adverse events. We collected data in the short term (up to three months after surgery) and in the medium term (later than three months after surgery). MAIN RESULTS: We included 21 studies, involving 1543 fractures in 1517 participants; two studies were quasi-RCTs. Twenty studies tested LIPUS and one trial tested ECSW; no studies tested HIFUS. Four studies did not report any of the critical outcomes. All studies had unclear or high risk of bias in at least one domain. The certainty of the evidence was downgraded for imprecision, risk of bias and inconsistency. LIPUS versus control (20 studies, 1459 participants) We found very low-certainty evidence for the effect of LIPUS on Health-related quality of life (HRQoL) measured by SF-36 at up to one year after surgery for lower limb fractures (mean difference (MD) 0.06, 95% confidence interval (CI) -3.85 to 3.97, favours LIPUS; 3 studies, 393 participants). This result was compatible with a clinically important difference of 3 units with both LIPUS or control. There may be little to no difference in time to return to work after people had complete fractures of the upper or lower limbs (MD 1.96 days, 95% CI -2.13 to 6.04, favours control; 2 studies, 370 participants; low-certainty evidence). There is probably little or no difference in delayed union or non-union up to 12 months after surgery (RR 1.25, 95% CI 0.50 to 3.09, favours control; 7 studies, 746 participants; moderate-certainty evidence). Although data for delayed and non-union included both upper and lower limbs, we noted that there were no incidences of delayed or non-union in upper limb fractures. We did not pool data for time to fracture union (11 studies, 887 participants; very low-certainty evidence) because of substantial statistical heterogeneity which we could not explain. In upper limb fractures, MDs ranged from 0.32 to 40 fewer days to fracture union with LIPUS. In lower limb fractures, MDs ranged from 88 fewer days to 30 more days to fracture union. We also did not pool data for pain experienced at one month after surgery in people with upper limb fractures (2 studies, 148 participants; very low-certainty evidence) because of substantial unexplained statistical heterogeneity. Using a 10-point visual analogue scale, one study reported less pain with LIPUS (MD -1.7, 95% CI -3.03 to -0.37; 47 participants), and the effect was less precise in the other study (MD -0.4, 95% CI -0.61 to 0.53; 101 participants). We found little or no difference in skin irritation (a possible treatment-related adverse event) between groups but judged the certainty of the evidence from this small study to be very low (RR 0.94, 95% CI 0.06 to 14.65; 1 study, 101 participants). No studies reported data for functional recovery. Data for treatment adherence were inconsistently reported across studies, but was generally described to be good. Data for costs were reported for one study, with higher direct costs, as well as combined direct and indirect costs, for LIPUS use. ECSW versus control (1 study, 56 participants) We are uncertain whether ECSW reduces pain at 12 months after surgery in fractures of the lower limb (MD -0.62, 95% CI -0.97 to -0.27, favours ECSW); the difference between pain scores was unlikely to be clinically important, and the certainty of the evidence was very low. We are also uncertain of the effect of ECSW on delayed or non-union at 12 months because the certainty of this evidence is very low (RR 0.56, 95% CI 0.15 to 2.01; 1 study, 57 participants). There were no treatment-related adverse events. This study reported no data for HRQoL, functional recovery, time to return to normal activities, or time to fracture union. In addition, no data were available for adherence or cost.
We were uncertain of the effectiveness of ultrasound and shock wave therapy for acute fractures in terms of patient-reported outcome measures (PROMS), for which few studies reported data. It is probable that LIPUS makes little or no difference to delayed union or non-union. Future trials should be double-blind, randomised, placebo-controlled trials recording validated PROMs and following up all trial participants. Whilst time to union is difficult to measure, the proportion of participants achieving clinical and radiographic union at each follow-up point should be ascertained, alongside adherence with the study protocol and cost of treatment in order to better inform clinical practice.
Searle HKC
,Lewis SR
,Coyle C
,Welch M
,Griffin XL
... -
《-》
-
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》
-
Minimally Invasive Transforaminal Versus Lateral Lumbar Interbody Fusion for Degenerative Spinal Pathology: Clinical Outcome Comparison in Patients With Predominant Back Pain.
Retrospective review.
To compare perioperative and postoperative clinical outcomes between minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) and lateral lumbar interbody fusion (LLIF) in patients presenting with predominant back pain.
Two popular techniques utilized for lumbar arthrodesis are MIS-TLIF and LLIF. Both techniques have reported high fusion rates and suitable postoperative clinical outcomes. Scarce literature exists, however, comparing these 2 common fusion techniques in a subset population of patients presenting with predominant back pain preoperatively.
A retrospective review of lumbar procedures performed between November 2005 and December 2021 was conducted using a prospectively maintained single-surgeon database. Inclusion criteria were set as primary, elective, single, or multilevel MIS-TLIF or LLIF procedures for degenerative spinal pathology in patients with predominant preoperative back pain [visual analog scale (VAS) back pain preoperative score > VAS leg preoperative score]. Patients undergoing a revision procedure, single-level procedure at L5-S1, or surgery indicated for infectious, malignant, or traumatic etiologies were excluded. In addition, patients with VAS leg preoperative scores ≥ to VAS back preoperative scores were excluded. Patient demographics, perioperative characteristics, postoperative complications, and patient-reported outcome measures (PROMs) were collected. PROMs included VAS for back and leg pain, Oswestry Disability Index (ODI), and Short Form-12 (SF-12) Item Survey Mental (MCS) and Physical (PCS) Composite Scores with all values collected at the preoperative, 6-week, 12-week, 6-month, 1-year, and 2-year follow-up time point. Patients were grouped into 2 cohorts, depending on whether a patient underwent a MIS-TLIF or LLIF. Demographic and perioperative characteristics were compared between groups using χ 2 and Student t test for categorical and continuous variables, respectively. Mean PROM scores were compared between cohorts at each time point utilizing an unpaired Student t test. Postoperative improvement from preoperative baseline within each cohort was assessed with paired samples t test. Achievement of minimum clinical important difference (MCID) was determined by comparing ΔPROM scores to previously established threshold values. MCID achievement rates were compared between groups with χ 2 analysis. Statistical significance was noted as a P value <0.05.
Eligible study cohort included 153 patients, split into 106 patients in the MIS-TLIF cohort and 47 patients in the LLIF cohort. The mean age was 55.9 years, the majority (57.5%) of patients were males, the mean body mass index was 30.8 kg/m 2 , and the majority of the included cohort were nondiabetic and nonhypertensive. No significant demographic differences were noted between cohorts. The MIS-TLIF cohort had a significantly greater proportion of patients with preoperative spinal pathology of recurrent herniated nucleus pulposus, whereas a significantly greater proportion of patients in the LLIF cohort demonstrated isthmic spondylolisthesis ( P < 0.046, all). No significant differences were noted between cohorts for operative duration, estimated blood loss, 1-year rate of arthrodesis, postoperative length of stay, postoperative VAS pain scores on postoperative day 0 or 1, and postoperative narcotic consumption on postoperative day 0 or 1. Patients in the LLIF cohort showed greater rates of postoperative ileus (4.3% vs 0.0%). No other significant differences were noted between cohorts for postoperative complications. Between cohorts, preoperative PROM scores did not significantly differ. The following significant postoperative mean PROM scores were demonstrated: VAS back at 12 weeks and ODI at 12 weeks with both mean scores favoring the LLIF cohort. The MIS-TLIF cohort reported significant improvement from preoperative baseline to the 2-year time point for all PROMs collected at all individual postoperative time points except SF-12 MCS at 6 weeks ( P < 0.0, all). LLIF cohort reported significant improvement from preoperative baseline to the 1-year time point for all PROMs collected at all individual postoperative time points except for ODI at 6 weeks, 1 year, and 2 years, SF-12 MCS at 6 weeks and 2 years, and SF-12 PCS at 2 years( P < 0.042, all). The majority of patients in both cohorts achieved overall MCID for VAS back, VAS leg, ODI, and SF-12 PCS. A significantly greater proportion of patients in the LLIF cohort achieved MCID for SF-12 PCS at 12 weeks (94.4% vs 61.1%; P < 0.008).
Patients with predominant back pain undergoing MIS-TLIF or LLIF for degenerative spinal pathology demonstrated similar 2-year mean clinical outcomes for physical function, disability, leg pain, and back pain. At the 12-week time point, mean outcome scores for back pain and disability favored the lateral approach with concurrent higher rates of MCID achievement for physical function at that time point.
Jacob KC
,Patel MR
,Hartman TJ
,Nie JW
,Parsons AW
,Ribot MA
,Prabhu M
,Pawlowski H
,Vanjani N
,Singh K
... -
《-》