-
Prevention of self-harm and suicide in young people up to the age of 25 in education settings.
In 2016, globally, suicide was the second leading cause of death amongst those aged 15 to 29 years. Self-harm is increasingly common among young people in many countries, particularly among women and girls. The risk of suicide is elevated 30-fold in the year following hospital presentation for self-harm, and those with suicidal ideation have double the risk of suicide compared with the general population. Self-harm and suicide in young people are significant public health issues that cause distress for young people, their peers, and family, and lead to substantial healthcare costs. Educational settings are widely acknowledged as a logical and appropriate place to provide prevention and treatment. A comprehensive, high-quality systematic review of self-harm and suicide prevention programmes in all education settings is thus urgently required. This will support evidence-informed decision making to facilitate rational investment in prevention efforts in educational settings. Suicide and self-harm are distressing, and we acknowledge that the content of this review is sensitive as the data outlined below represents the lived and living experience of suicidal distress for individuals and their caregivers.
To assess the effects of interventions delivered in educational settings to prevent or address self-harm and suicidal ideation in young people (up to the age of 25) and examine whether the relative effects on self-harm and suicide are modified by education setting.
We searched the Cochrane Common Mental Disorders Specialised Register, CENTRAL, The Cochrane Database of Systematic Reviews, Ovid MEDLINE, PsycINFO, ERIC, Web of Science Social Science Citation Index, EBSCO host Australian Education Index, British Education Index, Educational Research Abstracts to 28 April 2023.
We included trials where the primary aim was to evaluate an intervention specifically designed to reduce self-harm or prevent suicide in an education setting. Randomised controlled trials (RCTs), cluster-RCTs, cross-over trials and quasi-randomised trials were eligible for inclusion. Primary outcomes were self-harm postintervention and acceptability; secondary outcomes included suicidal ideation, hopelessness, and two outcomes co-designed with young people: better or more coping skills, and a safe environment, with more acceptance and understanding.
We used standard methodological procedures as expected by Cochrane. Two review authors independently selected studies, extracted data, and assessed risk of bias. We analysed dichotomous data as odds ratios (ORs) and continuous data as standardised mean differences (SMDs) with 95% confidence intervals (CIs). We conducted random-effects meta-analyses and assessed certainty of evidence using the GRADE approach. For co-designed outcomes, we used vote counting based on the direction of effect, as there is a huge variation in the data and the effect measure used in the included studies.
We included 51 trials involving 36,414 participants (minimum 23; maximum 11,100). Twenty-seven studies were conducted in secondary schools, one in middle school, one in primary school, 19 in universities, one in medical school, and one across education and community settings. Eighteen trials investigated universal interventions, 11 of which provided data for at least one meta-analysis, but no trials provided data for self-harm postintervention. Evidence on the acceptability of universal interventions is of very low certainty, and indicates little or no difference between groups (OR 0.77, 95% CI 0.36 to 1.67; 9 studies, 8528 participants). Low-certainty evidence showed little to no effect on suicidal ideation (SMD -0.02, 95% CI -0.23 to 0.20; 4 studies, 379 participants) nor on hopelessness (MD -0.01, 95% CI -1.98 to 1.96; 1 trial, 121 participants). Fifteen trials investigated selective interventions, eight of which provided data for at least one meta-analysis, but only one trial provided data for self-harm postintervention. Low-certainty evidence indicates that selective interventions may reduce self-harm postintervention slightly (OR 0.39, 95% CI 0.06 to 2.43; 1 trial, 148 participants). While no trial provided data for hopelessness, little to no effect was found on acceptability (OR 1.00, 95% CI 0.5 to 2.0; 6 studies, 10,208 participants; very low-certainty evidence) or suicidal ideation (SMD 0.04, 95% CI -0.36 to 0.43; 2 studies, 102 participants; low-certainty evidence). Seventeen trials investigated indicated interventions, 14 of which provided data for at least one meta-analysis, but only four trials provided data for self-harm postintervention and two reported no events in both groups. Low-certainty evidence suggests that indicated interventions may slightly reduce self-harm postintervention (OR 0.19, 95% CI 0.02 to 1.76; 2 studies, 76 participants). There is also low-certainty evidence indicating that these interventions may decrease the odds of non-suicidal self-injury (OR 0.65, 95% CI 0.24 to 1.79; 2 studies, 89 participants). Evidence of a slight decrease in acceptability in the intervention group is of low certainty (OR 1.44, 95% CI 0.86 to 2.42; 10 studies, 641 participants). Low-certainty evidence shows that indicated interventions may slightly reduce suicidal ideation (SMD -0.33, 95% CI -0.55 to -0.10; 10 studies, 685 participants) and may result in little to no difference in hopelessness postintervention (SMD -0.27, 95% CI -0.55 to 0.01; 6 studies, 455 participants). There were mixed findings regarding the effect of suicide prevention interventions on a range of constructs relevant to coping skills and safe environment. None of the trials, however, measured the impact of improvements in these constructs on self-harm or suicidal ideation.
While this review provides an update on the evidence about interventions targeting self-harm and suicide prevention in education settings, there remains significant uncertainty about the impact of these interventions. There are some promising findings but large replication studies are needed, as are studies that examine the combination of different intervention approaches, and can be delivered in a safe environment and implemented over a long period of time. Further research is required to understand and measure outcomes that are meaningful to young people with lived experience, as they want coping skills and safety of the environment in which they conduct their everyday lives to be measured as key outcomes in future trials.
Sharma V
,Marshall D
,Fortune S
,Prescott AE
,Boggiss A
,Macleod E
,Mitchell C
,Clarke A
,Robinson J
,Witt KG
,Hawton K
,Hetrick SE
... -
《Cochrane Database of Systematic Reviews》
-
Conservative, physical and surgical interventions for managing faecal incontinence and constipation in adults with central neurological diseases.
People with central neurological disease or injury have a much higher risk of both faecal incontinence (FI) and constipation than the general population. There is often a fine line between the two symptoms, with management intended to ameliorate one risking precipitating the other. Bowel problems are observed to be the cause of much anxiety and may reduce quality of life in these people. Current bowel management is largely empirical, with a limited research base. The review is relevant to individuals with any disease directly and chronically affecting the central nervous system (post-traumatic, degenerative, ischaemic or neoplastic), such as multiple sclerosis, spinal cord injury, cerebrovascular disease, Parkinson's disease and Alzheimer's disease. This is an update of a Cochrane Review first published in 2001 and subsequently updated in 2003, 2006 and 2014.
To assess the effects of conservative, physical and surgical interventions for managing FI and constipation in people with a neurological disease or injury affecting the central nervous system.
We searched the Cochrane Incontinence Specialised Register (searched 27 March 2023), which includes searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE In-Process, MEDLINE Epub Ahead of Print, ClinicalTrials.gov, WHO ICTRP as well as handsearching of journals and conference proceedings; and all reference lists of relevant articles.
We included randomised, quasi-randomised (where allocation is not strictly random), cross-over and cluster-randomised trials evaluating any type of conservative, physical or surgical intervention against placebo, usual care or no intervention for the management of FI and constipation in people with central neurological disease or injury.
At least two review authors independently assessed the risk of bias in eligible trials using Cochrane's 'Risk of bias' tool and independently extracted data from the included trials using a range of prespecified outcome measures. We produced summary of findings tables for our main outcome measures and assessed the certainty of the evidence using GRADE.
We included 25 studies with 1598 participants. The studies were generally at high risk of bias due to lack of blinding of participants and personnel to the intervention. Half of the included studies were also at high risk of bias in terms of selective reporting. Outcomes were often reported heterogeneously across studies, making it difficult to pool data. We did not find enough evidence to be able to analyse the effects of interventions on individual central neurological diseases. Additionally, very few studies reported on the primary outcomes of self-reported improvement in FI or constipation, or Neurogenic Bowel Dysfunction Score. Conservative interventions compared with usual care, no active treatment or placebo Thirteen studies assessed this comparison. The interventions included assessment-based nursing, holistic nursing, probiotics, psyllium, faecal microbiota transplantation, and a stepwise protocol of increasingly invasive evacuation methods. Conservative interventions may result in a large improvement in faecal incontinence (standardised mean difference (SMD) -1.85, 95% confidence interval (CI) -3.47 to -0.23; 3 studies; n = 410; low-certainty evidence). We interpreted SMD ≥ 0.80 as a large effect. It was not possible to pool all data from studies that assessed improvement in constipation, but the evidence suggested that conservative interventions may improve constipation symptoms (data not pooled; 8 studies; n = 612; low-certainty evidence). Conservative interventions may lead to a reduction in mean time taken on bowel care (data not pooled; 5 studies; n = 526; low-certainty evidence). The evidence is uncertain about the effects of conservative interventions on condition-specific quality of life and adverse events. Neurogenic Bowel Dysfunction Score was not reported. Physical therapy compared with usual care, no active treatment or placebo Twelve studies assessed this comparison. The interventions included massage therapy, standing, osteopathic manipulative treatment, electrical stimulation, transanal irrigation, and conventional physical therapy with visceral mobilisation. Physical therapies may make little to no difference to self-reported faecal continence assessed using the St Mark's Faecal Incontinence Score, where the minimally important difference is five, or the Cleveland Constipation Score (MD -2.60, 95% CI -4.91 to -0.29; 3 studies; n = 155; low-certainty evidence). Physical therapies may result in a moderate improvement in constipation symptoms (SMD -0.62, 95% CI -1.10 to -0.14; 9 studies; n = 431; low-certainty evidence). We interpreted SMD ≥ 0.5 as a moderate effect. However, physical therapies may make little to no difference in Neurogenic Bowel Dysfunction Score as the minimally important difference for this tool is 3 (MD -1.94, 95% CI -3.36 to -0.51; 7 studies; n = 358; low-certainty evidence). We are very uncertain about the effects of physical therapies on the time spent on bowel care, condition-specific quality of life and adverse effects (all very low-certainty evidence). Surgical interventions compared with usual care, no active treatment or placebo No studies were found for surgical interventions that met the inclusion criteria for this review.
There remains little research on this common and, for patients, very significant issue of bowel management. The available evidence is almost uniformly of low methodological quality. The clinical significance of some of the research findings presented here is difficult to interpret, not least because each intervention has only been addressed in individual trials, against control rather than compared against each other, and the interventions are very different from each other. Understanding whether there is a clinically-meaningful difference from the results of available trials is largely hampered by the lack of uniform outcome measures. This is due to an absence of core outcome sets, and development of these needs to be a research priority to allow studies to be compared directly. Some studies used validated constipation, incontinence or condition-specific measures; however, others used unvalidated analogue scales to report effectiveness. Some studies did not use any patient-reported outcomes and focused on physiological outcome measures, which is of relatively limited significance in terms of clinical implementation. There was evidence in favour of some conservative interventions, but these findings need to be confirmed by larger, well-designed controlled trials, which should include evaluation of the acceptability of the intervention to patients and the effect on their quality of life.
Todd CL
,Johnson EE
,Stewart F
,Wallace SA
,Bryant A
,Woodward S
,Norton C
... -
《Cochrane Database of Systematic Reviews》
-
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》
-
Educational and psychological interventions for managing atopic dermatitis (eczema).
Atopic dermatitis (eczema), can have a significant impact on well-being and quality of life for affected people and their families. Standard treatment is avoidance of triggers or irritants and regular application of emollients and topical steroids or calcineurin inhibitors. Thorough physical and psychological assessment is central to good-quality treatment. Overcoming barriers to provision of holistic treatment in dermatological practice is dependent on evaluation of the efficacy and economics of both psychological and educational interventions in this participant group. This review is based on a previous Cochrane review published in 2014, and now includes adults as well as children.
To assess the clinical outcomes of educational and psychological interventions in children and adults with atopic dermatitis (eczema) and to summarise the availability and principal findings of relevant economic evaluations.
We searched the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, APA PsycINFO and two trials registers up to March 2023. We checked the reference lists of included studies and related systematic reviews for further references to relevant randomised controlled trials (RCTs) and contacted experts in the field to identify additional studies. We searched NHS Economic Evaluation Database, MEDLINE and Embase for economic evaluations on 8 June 2022.
Randomised, cluster-randomised and cross-over RCTs that assess educational and psychological interventions for treating eczema in children and adults.
We used standard Cochrane methods, with GRADE to assess the certainty of the evidence for each outcome. Primary outcomes were reduction in disease severity, as measured by clinical signs, patient-reported symptoms and improvement in health-related quality-of-life (HRQoL) measures. Secondary outcomes were improvement in long-term control of symptoms, improvement in psychological well-being, improvement in standard treatment concordance and adverse events. We assessed short- (up to 16 weeks after treatment) and long-term time points (more than 16 weeks).
We included 37 trials (6170 participants). Most trials were conducted in high-income countries (34/37), in outpatient settings (25/37). We judged three trials to be low risk of bias across all domains. Fifteen trials had a high risk of bias in at least one domain, mostly due to bias in measurement of the outcome. Trials assessed interventions compared to standard care. Individual educational interventions may reduce short-term clinical signs (measured by SCORing Atopic Dermatitis (SCORAD); mean difference (MD) -5.70, 95% confidence interval (CI) -9.39 to -2.01; 1 trial, 30 participants; low-certainty evidence) but patient-reported symptoms, HRQoL, long-term eczema control and psychological well-being were not reported. Group education interventions probably reduce clinical signs (SCORAD) both in the short term (MD -9.66, 95% CI -19.04 to -0.29; 3 studies, 731 participants; moderate-certainty evidence) and the long term (MD -7.22, 95% CI -11.01 to -3.43; 3 studies, 1424 participants; moderate-certainty evidence) and probably reduce long-term patient-reported symptoms (SMD -0.47 95% CI -0.60 to -0.33; 2 studies, 908 participants; moderate-certainty evidence). They may slightly improve short-term HRQoL (SMD -0.19, 95% CI -0.36 to -0.01; 4 studies, 746 participants; low-certainty evidence), but may make little or no difference to short-term psychological well-being (Perceived Stress Scale (PSS); MD -2.47, 95% CI -5.16 to 0.22; 1 study, 80 participants; low-certainty evidence). Long-term eczema control was not reported. We don't know whether technology-mediated educational interventions could improve short-term clinical signs (SCORAD; 1 study; 29 participants; very low-certainty evidence). They may have little or no effect on short-term patient-reported symptoms (Patient Oriented Eczema Measure (POEM); MD -0.76, 95% CI -1.84 to 0.33; 2 studies; 195 participants; low-certainty evidence) and probably have little or no effect on short-term HRQoL (MD 0, 95% CI -0.03 to 0.03; 2 studies, 430 participants; moderate-certainty evidence). Technology-mediated education interventions probably slightly improve long-term eczema control (Recap of atopic eczema (RECAP); MD -1.5, 95% CI -3.13 to 0.13; 1 study, 232 participants; moderate-certainty evidence), and may improve short-term psychological well-being (MD -1.78, 95% CI -2.13 to -1.43; 1 study, 24 participants; low-certainty evidence). Habit reversal treatment may reduce short-term clinical signs (SCORAD; MD -6.57, 95% CI -13.04 to -0.1; 1 study, 33 participants; low-certainty evidence) but we are uncertain about any effects on short-term HRQoL (Children's Dermatology Life Quality Index (CDLQI); 1 study, 30 participants; very low-certainty evidence). Patient-reported symptoms, long-term eczema control and psychological well-being were not reported. We are uncertain whether arousal reduction therapy interventions could improve short-term clinical signs (Eczema Area and Severity Index (EASI); 1 study, 24 participants; very low-certainty evidence) or patient-reported symptoms (visual analogue scale (VAS); 1 study, 18 participants; very low-certainty evidence). Arousal reduction therapy may improve short-term HRQoL (Dermatitis Family Impact (DFI); MD -2.1, 95% CI -4.41 to 0.21; 1 study, 91 participants; low-certainty evidence) and psychological well-being (PSS; MD -1.2, 95% CI -3.38 to 0.98; 1 study, 91 participants; low-certainty evidence). Long-term eczema control was not reported. No studies reported standard care compared with self-help psychological interventions, psychological therapies or printed education; or adverse events. We identified two health economic studies. One found that a 12-week, technology-mediated, educational-support programme may be cost neutral. The other found that a nurse practitioner group-education intervention may have lower costs than standard care provided by a dermatologist, with comparable effectiveness.
In-person, individual education, as an adjunct to conventional topical therapy, may reduce short-term eczema signs compared to standard care, but there is no information on eczema symptoms, quality of life or long-term outcomes. Group education probably reduces eczema signs and symptoms in the long term and may also improve quality of life in the short term. Favourable effects were also reported for technology-mediated education, habit reversal treatment and arousal reduction therapy. All favourable effects are of uncertain clinical significance, since they may not exceed the minimal clinically important difference (MCID) for the outcome measures used (MCID 8.7 points for SCORAD, 3.4 points for POEM). We found no trials of self-help psychological interventions, psychological therapies or printed education. Future trials should include more diverse populations, address shared priorities, evaluate long-term outcomes and ensure patients are involved in trial design.
Singleton H
,Hodder A
,Almilaji O
,Ersser SJ
,Heaslip V
,O'Meara S
,Boyers D
,Roberts A
,Scott H
,Van Onselen J
,Doney L
,Boyle RJ
,Thompson AR
... -
《Cochrane Database of Systematic Reviews》
-
Oxycodone for cancer-related pain.
Many people with cancer experience moderate to severe pain that requires treatment with strong opioids, such as oxycodone and morphine. Strong opioids are, however, not effective for pain in all people, neither are they well tolerated by all people. The aim of this review was to assess whether oxycodone is associated with better pain relief and tolerability than other analgesic options for adults with cancer pain. This is an updated Cochrane review previously published in 2017.
To assess the effectiveness and tolerability of oxycodone by any route of administration for pain in adults with cancer.
For this update, we searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE and MEDLINE In-Process (Ovid), Embase (Ovid), Science Citation Index, Conference Proceedings Citation Index - Science (ISI Web of Science), BIOSIS (ISI), and PsycINFO (Ovid) to November 2021. We also searched four trial registries, checked the bibliographic references of relevant studies, and contacted the authors of the included studies. We applied no language, date, or publication status restrictions.
We included randomised controlled trials (parallel-group or cross-over) comparing oxycodone (any formulation or route of administration) with placebo or an active drug (including oxycodone) for cancer background pain in adults by examining pain intensity/relief, adverse events, quality of life, and participant preference.
Two review authors independently sifted the search, extracted data and assessed the included studies using standard Cochrane methodology. We meta-analysed pain intensity data using the generic inverse variance method, and pain relief and adverse events using the Mantel-Haenszel method, or summarised these data narratively along with the quality of life and participant preference data. We assessed the overall certainty of the evidence using GRADE.
For this update, we identified 19 new studies (1836 participants) for inclusion. In total, we included 42 studies which enrolled/randomised 4485 participants, with 3945 of these analysed for efficacy and 4176 for safety. The studies examined a number of different drug comparisons. Controlled-release (CR; typically taken every 12 hours) oxycodone versus immediate-release (IR; taken every 4-6 hours) oxycodone Pooled analysis of three of the four studies comparing CR oxycodone to IR oxycodone suggest that there is little to no difference between CR and IR oxycodone in pain intensity (standardised mean difference (SMD) 0.12, 95% confidence interval (CI) -0.1 to 0.34; n = 319; very low-certainty evidence). The evidence is very uncertain about the effect on adverse events, including constipation (RR 0.71, 95% CI 0.45 to 1.13), drowsiness/somnolence (RR 1.03, 95% CI 0.69 to 1.54), nausea (RR 0.85, 95% CI 0.56 to 1.28), and vomiting (RR 0.66, 95% CI 0.38 to 1.15) (very low-certainty evidence). There were no data available for quality of life or participant preference, however, three studies suggested that treatment acceptability may be similar between groups (low-certainty evidence). CR oxycodone versus CR morphine The majority of the 24 studies comparing CR oxycodone to CR morphine reported either pain intensity (continuous variable), pain relief (dichotomous variable), or both. Pooled analysis indicated that pain intensity may be lower (better) after treatment with CR morphine than CR oxycodone (SMD 0.14, 95% CI 0.01 to 0.27; n = 882 in 7 studies; low-certainty evidence). This SMD is equivalent to a difference of 0.27 points on the Brief Pain Inventory scale (0-10 numerical rating scale), which is not clinically significant. Pooled analyses also suggested that there may be little to no difference in the proportion of participants achieving complete or significant pain relief (RR 1.02, 95% CI 0.95 to 1.10; n = 1249 in 13 studies; low-certainty evidence). The RR for constipation (RR 0.75, 95% CI 0.66 to 0.86) may be lower after treatment with CR oxycodone than after CR morphine. Pooled analyses showed that, for most of the adverse events, the CIs were wide, including no effect as well as potential benefit and harm: drowsiness/somnolence (RR 0.88, 95% CI 0.74 to 1.05), nausea (RR 0.93, 95% CI 0.77 to 1.12), and vomiting (RR 0.81, 95% CI 0.63 to 1.04) (low or very low-certainty evidence). No data were available for quality of life. The evidence is very uncertain about the treatment effects on treatment acceptability and participant preference. Other comparisons The remaining studies either compared oxycodone in various formulations or compared oxycodone to different alternative opioids. None found any clear superiority or inferiority of oxycodone for cancer pain, neither as an analgesic agent nor in terms of adverse event rates and treatment acceptability. The certainty of this evidence base was limited by the high or unclear risk of bias of the studies and by imprecision due to low or very low event rates or participant numbers for many outcomes.
The conclusions have not changed since the previous version of this review (in 2017). We found low-certainty evidence that there may be little to no difference in pain intensity, pain relief and adverse events between oxycodone and other strong opioids including morphine, commonly considered the gold standard strong opioid. Although we identified a benefit for pain relief in favour of CR morphine over CR oxycodone, this was not clinically significant and did not persist following sensitivity analysis and so we do not consider this important. However, we found that constipation and hallucinations occurred less often with CR oxycodone than with CR morphine; but the certainty of this evidence was either very low or the finding did not persist following sensitivity analysis, so these findings should be treated with utmost caution. Our conclusions are consistent with other reviews and suggest that, while the reliability of the evidence base is low, given the absence of important differences within this analysis, it seems unlikely that larger head-to-head studies of oxycodone versus morphine are justified, although well-designed trials comparing oxycodone to other strong analgesics may well be useful. For clinical purposes, oxycodone or morphine can be used as first-line oral opioids for relief of cancer pain in adults.
Schmidt-Hansen M
,Bennett MI
,Arnold S
,Bromham N
,Hilgart JS
,Page AJ
,Chi Y
... -
《Cochrane Database of Systematic Reviews》