The value of restriction spectrum imaging in predicting lymph node metastases in rectal cancer: a comparative study with diffusion-weighted imaging and diffusion kurtosis imaging.
To investigate the efficacy of three-compartment restriction spectrum imaging (RSI), diffusion kurtosis imaging (DKI), and diffusion-weighted imaging (DWI) in the assessment of lymph node metastases (LNM) in rectal cancer.
A total of 77 patients with rectal cancer who underwent pelvic MRI were enrolled. RSI-derived parameters (f1, f2, and f3), DKI-derived parameters (Dapp and Kapp), and the DWI-derived parameter (ADC) were calculated and compared using a Mann-Whitney U test or independent samples t-test. Logistic regression (LR) analysis was used to identify independent predictors of LNM status. Area under the receiver operating characteristic curve (AUC) and Delong analysis were performed to assess the diagnostic performance of each parameter.
The LNM-positive group exhibited significantly higher f1 and Kapp levels and significantly lower f3, Dapp, and ADC levels compared to the LNM-negative group (p < 0.05). There was no difference in f2 levels between the two groups (p = 0.783). LR analysis showed that Dapp and Kapp were independent predictors of a positive LNM status. AUC and Delong analysis showed that DKI (Dapp + Kapp) exhibited significantly higher diagnostic efficacy (AUC = 0.908; sensitivity = 87.10%; specificity = 86.96%) than RSI (f1 + f3) and DWI (ADC), with AUCs were 0.842 and 0.771 (Z = 2.113, 3.453; p = 0.035, < 0.001, respectively). The AUC performance between RSI and DWI was also statistically significant (Z = 1.972, p = 0.049).
The RSI model is superior to conventional DWI but inferior to DKI in differentiation between LNM-positive and LNM-negative rectal cancers. Further study is needed before it could serve as a promising biomarker for guiding effective treatment strategies.
The three-compartment restriction spectrum imaging was able to differentiate between LNM-positive and LNM-negative rectal cancers with high accuracy, which has the potential to serve as a promising biomarker that could guide treatment strategies.
Three-compartment restriction spectrum imaging could differentiate lymph node metastases in rectal cancer. Diffusion kurtosis imaging and diffusion-weighted were associated with lymph node metastases in rectal cancer. The combination of different parameters has the potential to serve as a promising biomarker.
Yin H
,Liu W
,Xue Q
,Song C
,Ren J
,Li Z
,Wang D
,Wang K
,Han D
,Yan R
... -
《Insights into Imaging》
Monoexponential, biexponential, stretched exponential and diffusion kurtosis models of diffusion-weighted imaging: a quantitative differentiation of solitary pulmonary lesion.
Diffusion-weighted imaging (DWI) can be used for quantitative tumor assessment. DWI with different models may show different aspects of tissue characteristics.
To investigate the diagnostic performance of parameters derived from monoexponential, biexponential, stretched exponential magnetic resonance diffusion weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in differentiating benign from malignant solitary pulmonary lesions (SPLs).
Forty-four SPL subjects were selected according to the inclusion criteria. All patients underwent conventional and multi‑b DWI sequences. Monoexponential DWI and DKI model were fitted using least square method. Levenberg-Marquardt nonlinear fitting biexponential and stretched exponential DWI. Region of interests (ROIs) were described manually. Parameters between benign and malignant SPLs were compared using independent sample t test or the Mann-Whitney U test. Receiver operating characteristic (ROC) curves analysis was used to investigate the diagnostic performance of different DWI parameters. Correlation between all parameters were evaluated by using Spearman correlation.
ADC, ADCslow, α, DDC and Dapp values were significantly lower in malignant SPL than in benign SPL (P < 0.001). Kapp was significantly higher in malignant SPL than in benign SPL (P < 0.001). Among all subjects, ADCslow was significantly lower than ADC (P < 0.05), while DDC and Dapp were significantly higher than ADC (P < 0.05). When observing the ROC curves for distinguishing benign and malignant SPL, the AUC values of ADC, ADCslow, DDC, Dapp, and Kapp were 0.904, 0.815, 0.942, 0.93, and 0.815, respectively. The DDC value has the highest area under ROC curve value. DeLong analysis showed no statistically significant difference in the area under ADC, DDC, and Dapp curves. There were strong correlations among ADC, ADCslow, ADCfast, f, α, DDC, Dapp, and Kapp (P < 0.001).
Multi‑b DWI is a promising method for differentiating benign from malignant SPLs with high diagnostic accuracy. In addition, the DDC derived from stretched‑exponential model is the most promising DWI parameter for the differentiation of benign and malignant SPLs.
This study was a clinical trail study, with study protocol published at ClinicalTrails. Retrospectively registered number ChiCTR2300074258, date of registration 02/08/2023.
Wang K
,Wu G
《BMC MEDICAL IMAGING》
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
Survival estimation for patients with symptomatic skeletal metastases ideally should be made before a type of local treatment has already been determined. Currently available survival prediction tools, however, were generated using data from patients treated either operatively or with local radiation alone, raising concerns about whether they would generalize well to all patients presenting for assessment. The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA), trained with institution-based data of surgically treated patients, and the Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy model (METSSS), trained with registry-based data of patients treated with radiotherapy alone, are two of the most recently developed survival prediction models, but they have not been tested on patients whose local treatment strategy is not yet decided.
(1) Which of these two survival prediction models performed better in a mixed cohort made up both of patients who received local treatment with surgery followed by radiotherapy and who had radiation alone for symptomatic bone metastases? (2) Which model performed better among patients whose local treatment consisted of only palliative radiotherapy? (3) Are laboratory values used by SORG-MLA, which are not included in METSSS, independently associated with survival after controlling for predictions made by METSSS?
Between 2010 and 2018, we provided local treatment for 2113 adult patients with skeletal metastases in the extremities at an urban tertiary referral academic medical center using one of two strategies: (1) surgery followed by postoperative radiotherapy or (2) palliative radiotherapy alone. Every patient's survivorship status was ascertained either by their medical records or the national death registry from the Taiwanese National Health Insurance Administration. After applying a priori designated exclusion criteria, 91% (1920) were analyzed here. Among them, 48% (920) of the patients were female, and the median (IQR) age was 62 years (53 to 70 years). Lung was the most common primary tumor site (41% [782]), and 59% (1128) of patients had other skeletal metastases in addition to the treated lesion(s). In general, the indications for surgery were the presence of a complete pathologic fracture or an impending pathologic fracture, defined as having a Mirels score of ≥ 9, in patients with an American Society of Anesthesiologists (ASA) classification of less than or equal to IV and who were considered fit for surgery. The indications for radiotherapy were relief of pain, local tumor control, prevention of skeletal-related events, and any combination of the above. In all, 84% (1610) of the patients received palliative radiotherapy alone as local treatment for the target lesion(s), and 16% (310) underwent surgery followed by postoperative radiotherapy. Neither METSSS nor SORG-MLA was used at the point of care to aid clinical decision-making during the treatment period. Survival was retrospectively estimated by these two models to test their potential for providing survival probabilities. We first compared SORG to METSSS in the entire population. Then, we repeated the comparison in patients who received local treatment with palliative radiation alone. We assessed model performance by area under the receiver operating characteristic curve (AUROC), calibration analysis, Brier score, and decision curve analysis (DCA). The AUROC measures discrimination, which is the ability to distinguish patients with the event of interest (such as death at a particular time point) from those without. AUROC typically ranges from 0.5 to 1.0, with 0.5 indicating random guessing and 1.0 a perfect prediction, and in general, an AUROC of ≥ 0.7 indicates adequate discrimination for clinical use. Calibration refers to the agreement between the predicted outcomes (in this case, survival probabilities) and the actual outcomes, with a perfect calibration curve having an intercept of 0 and a slope of 1. A positive intercept indicates that the actual survival is generally underestimated by the prediction model, and a negative intercept suggests the opposite (overestimation). When comparing models, an intercept closer to 0 typically indicates better calibration. Calibration can also be summarized as log(O:E), the logarithm scale of the ratio of observed (O) to expected (E) survivors. A log(O:E) > 0 signals an underestimation (the observed survival is greater than the predicted survival); and a log(O:E) < 0 indicates the opposite (the observed survival is lower than the predicted survival). A model with a log(O:E) closer to 0 is generally considered better calibrated. The Brier score is the mean squared difference between the model predictions and the observed outcomes, and it ranges from 0 (best prediction) to 1 (worst prediction). The Brier score captures both discrimination and calibration, and it is considered a measure of overall model performance. In Brier score analysis, the "null model" assigns a predicted probability equal to the prevalence of the outcome and represents a model that adds no new information. A prediction model should achieve a Brier score at least lower than the null-model Brier score to be considered as useful. The DCA was developed as a method to determine whether using a model to inform treatment decisions would do more good than harm. It plots the net benefit of making decisions based on the model's predictions across all possible risk thresholds (or cost-to-benefit ratios) in relation to the two default strategies of treating all or no patients. The care provider can decide on an acceptable risk threshold for the proposed treatment in an individual and assess the corresponding net benefit to determine whether consulting with the model is superior to adopting the default strategies. Finally, we examined whether laboratory data, which were not included in the METSSS model, would have been independently associated with survival after controlling for the METSSS model's predictions by using the multivariable logistic and Cox proportional hazards regression analyses.
Between the two models, only SORG-MLA achieved adequate discrimination (an AUROC of > 0.7) in the entire cohort (of patients treated operatively or with radiation alone) and in the subgroup of patients treated with palliative radiotherapy alone. SORG-MLA outperformed METSSS by a wide margin on discrimination, calibration, and Brier score analyses in not only the entire cohort but also the subgroup of patients whose local treatment consisted of radiotherapy alone. In both the entire cohort and the subgroup, DCA demonstrated that SORG-MLA provided more net benefit compared with the two default strategies (of treating all or no patients) and compared with METSSS when risk thresholds ranged from 0.2 to 0.9 at both 90 days and 1 year, indicating that using SORG-MLA as a decision-making aid was beneficial when a patient's individualized risk threshold for opting for treatment was 0.2 to 0.9. Higher albumin, lower alkaline phosphatase, lower calcium, higher hemoglobin, lower international normalized ratio, higher lymphocytes, lower neutrophils, lower neutrophil-to-lymphocyte ratio, lower platelet-to-lymphocyte ratio, higher sodium, and lower white blood cells were independently associated with better 1-year and overall survival after adjusting for the predictions made by METSSS.
Based on these discoveries, clinicians might choose to consult SORG-MLA instead of METSSS for survival estimation in patients with long-bone metastases presenting for evaluation of local treatment. Basing a treatment decision on the predictions of SORG-MLA could be beneficial when a patient's individualized risk threshold for opting to undergo a particular treatment strategy ranged from 0.2 to 0.9. Future studies might investigate relevant laboratory items when constructing or refining a survival estimation model because these data demonstrated prognostic value independent of the predictions of the METSSS model, and future studies might also seek to keep these models up to date using data from diverse, contemporary patients undergoing both modern operative and nonoperative treatments.
Level III, diagnostic study.
Lee CC
,Chen CW
,Yen HK
,Lin YP
,Lai CY
,Wang JL
,Groot OQ
,Janssen SJ
,Schwab JH
,Hsu FM
,Lin WH
... -
《-》
Ultra-high b-value DWI in rectal cancer: image quality assessment and regional lymph node prediction based on radiomics.
This study aims to evaluate image quality and regional lymph node metastasis (LNM) in patients with rectal cancer (RC) on multi-b-value diffusion-weighted imaging (DWI).
This retrospective study included 199 patients with RC who had undergone multi-b-value DWI. Subjective (five-point Likert scale) and objective assessments of quality images were performed on DWIb1000, DWIb2000, and DWIb3000. Patients were randomly divided into a training (n = 140) or validation cohort (n = 59). Radiomics features were extracted within the whole volume tumor on ADC maps (b = 0, 1000 s/mm2), DWIb1000, DWIb2000, and DWIb3000, respectively. Five prediction models based on selected features were developed using logistic regression analysis. The performance of radiomics models was evaluated with a receiver operating characteristic curve, calibration, and decision curve analysis (DCA).
The mean signal intensity of the tumor (SItumor), signal-to-noise ratio (SNR), and artifact and anatomic differentiability score gradually were decreased as the b-value increased. However, the contrast-to-noise (CNR) on DWIb2000 was superior to those of DWIb1000 and DWIb3000 (4.58 ± 0.86, 3.82 ± 0.77, 4.18 ± 0.84, p < 0.001, respectively). The overall image quality score of DWIb2000 was higher than that of DWIb3000 (p < 0.001) and showed no significant difference between DWIb1000 and DWIb2000 (p = 0.059). The area under curve (AUC) value of the radiomics model based on DWIb2000 (0.728) was higher than conventional ADC maps (0.690), DWIb1000 (0.699), and DWIb3000 (0.707), but inferior to multi-b-value DWI (0.739) in predicting LNM.
DWIb2000 provides better lesion conspicuity and LNM prediction than DWIb1000 and DWIb3000 in RC.
DWIb2000 offers satisfactory visualization of lesions. Radiomics features based on DWIb2000 can be applied for preoperatively predicting regional lymph node metastasis in rectal cancer, thereby benefiting the stratified treatment strategy.
Lymph node staging is required to determine the best treatment plan for rectal cancer. DWIb2000 provides superior contrast-to-noise ratio and lesion conspicuity and its derived radiomics best predict lymph node metastasis. DWIb2000 may be recommended as the optimal b-value in rectal MRI protocol.
Hao Y
,Zheng J
,Li W
,Zhao W
,Zheng J
,Wang H
,Ren J
,Zhang G
,Zhang J
... -
《-》