-
Intravoxel incoherent motion diffusion-weighted imaging in nasopharyngeal carcinoma: comparison of the turbo spin-echo and echo-planar imaging techniques.
Traditional echo-planar imaging with intravoxel incoherent motion (EPI-IVIM) exhibits significant magnetic susceptibility artifacts and geometric distortions, which limits its application in nasopharyngeal carcinoma (NPC). This study aimed to compare the qualitative and quantitative indicators between turbo spin echo with intravoxel incoherent motion (TSE-IVIM) and EPI-IVIM in patients with NPC and to provide optimal scanning strategies based on the relationships among these indicators.
A cross-sectional study was conducted between March 2022 and August 2022. Patients with pathologically confirmed NPC underwent pretreatment staging magnetic resonance (MR) examinations with both TSE-IVIM and EPI-IVIM. IVIM images were subjectively and objectively assessed for anatomical structures including nasopharyngeal lesions, nasal concha, the spinal cord, and the temporal pole. Subjective evaluation indicators (including susceptibility artifacts, geometric distortion, lesion conspicuity, and overall image quality on a five-point scale) were compared using the Wilcoxon signed rank test. Quantitative indicators, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and IVIM-derived parameters (true diffusion coefficients, perfusion fraction, pseudodiffusion coefficient), were compared using the Wilcoxon signed rank test. Bland-Altman plots and coefficient of variation (CV) were used to compare the reproducibility and robustness of the ADC and IVIM-derived parameters between TSE-IVIM and EPI-IVIM.
A total of 30 patients (24 males and 6 females) aged between 29 and 71 years (mean age 47.6±12.3 years) were included in the study. TSE-IVIM demonstrated significantly better subjective evaluation indicators for nasopharyngeal lesions, nasal concha, and temporal poles as compared to EPI-IVIM (all P values <0.001), with no significant difference observed in the spinal cord. The SNR of TSE-IVIM was significantly lower than that of EPI-IVIM in the spinal cord and temporal pole (SNR: P=0.027 and P=0.026, respectively). For nasopharyngeal lesions and nasal concha, TSE-IVIM showed no significant difference in SNR (P=0.926 and P=0.428, respectively) but had a significantly higher CNR compared to EPI-IVIM (P=0.003 and P=0.01, respectively). The perfusion fraction (f) value for TSE-IVIM in nasopharyngeal lesions was significantly lower than that for EPI-IVIM (P=0.004), while no statistically significant differences were found in the diffusion coefficient (D) or pseudodiffusion coefficient (D*) values (P=0.914 and P=0.644, respectively). The 95% limits of agreement (LoAs) in nasopharyngeal lesions and nasal concha were wider and had a larger CV compared to those in the spinal cord and temporal pole.
TSE-IVIM provided better subjective image quality scores and a significantly higher CNR, with no significant reduction in SNR. It demonstrated superior image quality and more stable quantitative indicators for nasopharyngeal lesions and nasal concha although magnetic sensitivity artifacts were more noticeable. Due to the different f values and wide LoAs observed between the two sequences in nasopharyngeal lesions, TSE-IVIM is recommended for follow-up in patients with NPC.
Liu Y
,Hu L
,Qian L
,Chen M
,Xu S
,Sun P
,Huang J
,Lei Z
... -
《-》
-
Acquisition and reconstruction with motion suppression DWI enhance image quality in nasopharyngeal carcinoma patients: Non-echo-planar DWI comparison with single-shot echo-planar DWI.
To evaluate the impact of application acquisition and reconstruction with motion suppression (ARMS) technology on improving the image quality of diffusion-weighted Imaging (DWI) for nasopharyngeal carcinoma (NPC), compared to single-shot echo-planar imaging (SS-EPI).
A total of 90 patients with NPC underwent MR examination, including ARMS DWI and SS-EPI DWI sequences. Both DWI sequences were acquired with b-values 0 and 800 s/mm2. Two radiologists evaluated the visibility of the lesion, geometric distortion, and overall image quality of the two DWI sequences. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), geometric distortion degree, and apparent diffusion coefficient (ADC) values of the nasopharyngeal lesions were assessed and compared for two sequences. The Wilcoxon signed-rank test was used to compare the quantitative and qualitative parameters of the two sequences.
The lesion visibility, geometric distortion, and overall image quality scores were significantly higher in ARMS DWI (all P<0.001). Four small-sized lesions were not visible and four lesions were partially visible in the SS-EPI DWI sequence. Lesion detection rate of ARMS DWI is 100 %, while that of SS-EPI is 95.56 %, P<0.043. The mismatch distance between the fusion images of ARMS DWI and T2WI was smaller than that of SS-EPI DWI and T2WI (all P<0.001). The SNR and CNR of ARMS DWI were lower than that of SS-EPI DWI (114.48 ± 37.89 vs. 202.61 ± 78.84, P<0.001 and 1.81 ± 1.84 vs. 3.29 ± 3.71, P<0.003) while the ADC value was higher (839.19 ± 138.44 × 10-6 mm2/s vs. 788.82 ± 110.96 × 10-6 mm2/s, P<0.002).
ARMS DWI improves the image quality by reducing geometric distortion and magnetic susceptibility artifacts. ARMS DWI is superior to SS-EPI DWI for diagnosing small-sized nasopharyngeal lesions, although it has lower SNR and CNR.
Xu G
,Liu H
,Ling D
,Li Y
,Lu N
,Li X
,Zhang Y
,He H
,Huang Z
,Xie C
... -
《-》
-
Intravoxel incoherent motion diffusion-weighted imaging of solitary pulmonary lesions: initial study with gradient- and spin-echo sequences.
To evaluate the feasibility and image quality of intravoxel incoherent motion diffusion-weighted imaging (IVIM) using gradient- and spin-echo (GRASE) in solitary pulmonary lesions (SPLs) compared to echo planar imaging (EPI) and turbo spin-echo (TSE) at 3 T.
Forty-two patients with SPLs underwent lung magnetic resonance imaging (MRI) using TSE-IVIM, GRASE-IVIM, and EPI-IVIM at 3 T. Signal ratio (SR), contrast ratio (CR), and image distortion ratio (DR) of three sequences were compared. The reproducibility and repeatability of the apparent diffusion coefficient (ADC) and IVIM-derived parameters were assessed using the interclass correlation coefficient (ICC) and coefficient of variation (CV). The repeatability of the ADC and IVIM-derived parameters between all sequences was evaluated using the Bland-Altman method.
EPI-IVIM had a higher SR, lower CR, and higher DR (p<0.05); however, there was no significant difference between TSE-IVIM and GRASE-IVIM (p>0.05). Compared to the D and f values of TSE-IVIM (ICC lower limit >0.90), GRASE-IVIM and EPI-IVIM showed poor reproducibility (ICC lower limit<0.90). The repeatability of the ADC and D values obtained by TSE-IVIM (CV, 1.93-2.96% and 2.44-3.18%, respectively) and GRASE-IVIM (CV, 2.56-3.12% and 3.21-3.51%, respectively) were superior to those of EPI-IVIM (CV, 10.03-10.2% and 11.30-11.57%). The repeatability of D∗ and f values for all sequences was poor. Bland-Altman analysis showed wide limits of agreement between the ADC and IVIM-derived parameters for all sequences.
GRASE-IVIM reduced the DR, improved the stability of the ADC and D values on repeated scans, and had the shortest scanning time.
Yin M
,Cao G
,Lv S
,Sun Z
,Li M
,Wang H
,Yue X
... -
《-》
-
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Sample collection is a key driver of accuracy in the diagnosis of SARS-CoV-2 infection. Viral load may vary at different anatomical sampling sites and accuracy may be compromised by difficulties obtaining specimens and the expertise of the person taking the sample. It is important to optimise sampling accuracy within cost, safety and accessibility constraints.
To compare the sensitivity of different sampling collection sites and methods for the detection of current SARS-CoV-2 infection with any molecular or antigen-based test.
Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 22 February 2022. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions.
We included studies of symptomatic or asymptomatic people with suspected SARS-CoV-2 infection undergoing testing. We included studies of any design that compared results from different sample types (anatomical location, operator, collection device) collected from the same participant within a 24-hour period.
Within a sample pair, we defined a reference sample and an index sample collected from the same participant within the same clinical encounter (within 24 hours). Where the sample comparison was different anatomical sites, the reference standard was defined as a nasopharyngeal or combined naso/oropharyngeal sample collected into the same sample container and the index sample as the alternative anatomical site. Where the sample comparison was concerned with differences in the sample collection method from the same site, we defined the reference sample as that closest to standard practice for that sample type. Where the sample pair comparison was concerned with differences in personnel collecting the sample, the more skilled or experienced operator was considered the reference sample. Two review authors independently assessed the risk of bias and applicability concerns using the QUADAS-2 and QUADAS-C checklists, tailored to this review. We present estimates of the difference in the sensitivity (reference sample (%) minus index sample sensitivity (%)) in a pair and as an average across studies for each index sampling method using forest plots and tables. We examined heterogeneity between studies according to population (age, symptom status) and index sample (time post-symptom onset, operator expertise, use of transport medium) characteristics.
This review includes 106 studies reporting 154 evaluations and 60,523 sample pair comparisons, of which 11,045 had SARS-CoV-2 infection. Ninety evaluations were of saliva samples, 37 nasal, seven oropharyngeal, six gargle, six oral and four combined nasal/oropharyngeal samples. Four evaluations were of the effect of operator expertise on the accuracy of three different sample types. The majority of included evaluations (146) used molecular tests, of which 140 used RT-PCR (reverse transcription polymerase chain reaction). Eight evaluations were of nasal samples used with Ag-RDTs (rapid antigen tests). The majority of studies were conducted in Europe (35/106, 33%) or the USA (27%) and conducted in dedicated COVID-19 testing clinics or in ambulatory hospital settings (53%). Targeted screening or contact tracing accounted for only 4% of evaluations. Where reported, the majority of evaluations were of adults (91/154, 59%), 28 (18%) were in mixed populations with only seven (4%) in children. The median prevalence of confirmed SARS-CoV-2 was 23% (interquartile (IQR) 13%-40%). Risk of bias and applicability assessment were hampered by poor reporting in 77% and 65% of included studies, respectively. Risk of bias was low across all domains in only 3% of evaluations due to inappropriate inclusion or exclusion criteria, unclear recruitment, lack of blinding, nonrandomised sampling order or differences in testing kit within a sample pair. Sixty-eight percent of evaluation cohorts were judged as being at high or unclear applicability concern either due to inflation of the prevalence of SARS-CoV-2 infection in study populations by selectively including individuals with confirmed PCR-positive samples or because there was insufficient detail to allow replication of sample collection. When used with RT-PCR • There was no evidence of a difference in sensitivity between gargle and nasopharyngeal samples (on average -1 percentage points, 95% CI -5 to +2, based on 6 evaluations, 2138 sample pairs, of which 389 had SARS-CoV-2). • There was no evidence of a difference in sensitivity between saliva collection from the deep throat and nasopharyngeal samples (on average +10 percentage points, 95% CI -1 to +21, based on 2192 sample pairs, of which 730 had SARS-CoV-2). • There was evidence that saliva collection using spitting, drooling or salivating was on average -12 percentage points less sensitive (95% CI -16 to -8, based on 27,253 sample pairs, of which 4636 had SARS-CoV-2) compared to nasopharyngeal samples. We did not find any evidence of a difference in the sensitivity of saliva collected using spitting, drooling or salivating (sensitivity difference: range from -13 percentage points (spit) to -21 percentage points (salivate)). • Nasal samples (anterior and mid-turbinate collection combined) were, on average, 12 percentage points less sensitive compared to nasopharyngeal samples (95% CI -17 to -7), based on 9291 sample pairs, of which 1485 had SARS-CoV-2. We did not find any evidence of a difference in sensitivity between nasal samples collected from the mid-turbinates (3942 sample pairs) or from the anterior nares (8272 sample pairs). • There was evidence that oropharyngeal samples were, on average, 17 percentage points less sensitive than nasopharyngeal samples (95% CI -29 to -5), based on seven evaluations, 2522 sample pairs, of which 511 had SARS-CoV-2. A much smaller volume of evidence was available for combined nasal/oropharyngeal samples and oral samples. Age, symptom status and use of transport media do not appear to affect the sensitivity of saliva samples and nasal samples. When used with Ag-RDTs • There was no evidence of a difference in sensitivity between nasal samples compared to nasopharyngeal samples (sensitivity, on average, 0 percentage points -0.2 to +0.2, based on 3688 sample pairs, of which 535 had SARS-CoV-2).
When used with RT-PCR, there is no evidence for a difference in sensitivity of self-collected gargle or deep-throat saliva samples compared to nasopharyngeal samples collected by healthcare workers when used with RT-PCR. Use of these alternative, self-collected sample types has the potential to reduce cost and discomfort and improve the safety of sampling by reducing risk of transmission from aerosol spread which occurs as a result of coughing and gagging during the nasopharyngeal or oropharyngeal sample collection procedure. This may, in turn, improve access to and uptake of testing. Other types of saliva, nasal, oral and oropharyngeal samples are, on average, less sensitive compared to healthcare worker-collected nasopharyngeal samples, and it is unlikely that sensitivities of this magnitude would be acceptable for confirmation of SARS-CoV-2 infection with RT-PCR. When used with Ag-RDTs, there is no evidence of a difference in sensitivity between nasal samples and healthcare worker-collected nasopharyngeal samples for detecting SARS-CoV-2. The implications of this for self-testing are unclear as evaluations did not report whether nasal samples were self-collected or collected by healthcare workers. Further research is needed in asymptomatic individuals, children and in Ag-RDTs, and to investigate the effect of operator expertise on accuracy. Quality assessment of the evidence base underpinning these conclusions was restricted by poor reporting. There is a need for further high-quality studies, adhering to reporting standards for test accuracy studies.
Davenport C
,Arevalo-Rodriguez I
,Mateos-Haro M
,Berhane S
,Dinnes J
,Spijker R
,Buitrago-Garcia D
,Ciapponi A
,Takwoingi Y
,Deeks JJ
,Emperador D
,Leeflang MMG
,Van den Bruel A
,Cochrane COVID-19 Diagnostic Test Accuracy Group
... -
《Cochrane Database of Systematic Reviews》
-
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
Survival estimation for patients with symptomatic skeletal metastases ideally should be made before a type of local treatment has already been determined. Currently available survival prediction tools, however, were generated using data from patients treated either operatively or with local radiation alone, raising concerns about whether they would generalize well to all patients presenting for assessment. The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA), trained with institution-based data of surgically treated patients, and the Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy model (METSSS), trained with registry-based data of patients treated with radiotherapy alone, are two of the most recently developed survival prediction models, but they have not been tested on patients whose local treatment strategy is not yet decided.
(1) Which of these two survival prediction models performed better in a mixed cohort made up both of patients who received local treatment with surgery followed by radiotherapy and who had radiation alone for symptomatic bone metastases? (2) Which model performed better among patients whose local treatment consisted of only palliative radiotherapy? (3) Are laboratory values used by SORG-MLA, which are not included in METSSS, independently associated with survival after controlling for predictions made by METSSS?
Between 2010 and 2018, we provided local treatment for 2113 adult patients with skeletal metastases in the extremities at an urban tertiary referral academic medical center using one of two strategies: (1) surgery followed by postoperative radiotherapy or (2) palliative radiotherapy alone. Every patient's survivorship status was ascertained either by their medical records or the national death registry from the Taiwanese National Health Insurance Administration. After applying a priori designated exclusion criteria, 91% (1920) were analyzed here. Among them, 48% (920) of the patients were female, and the median (IQR) age was 62 years (53 to 70 years). Lung was the most common primary tumor site (41% [782]), and 59% (1128) of patients had other skeletal metastases in addition to the treated lesion(s). In general, the indications for surgery were the presence of a complete pathologic fracture or an impending pathologic fracture, defined as having a Mirels score of ≥ 9, in patients with an American Society of Anesthesiologists (ASA) classification of less than or equal to IV and who were considered fit for surgery. The indications for radiotherapy were relief of pain, local tumor control, prevention of skeletal-related events, and any combination of the above. In all, 84% (1610) of the patients received palliative radiotherapy alone as local treatment for the target lesion(s), and 16% (310) underwent surgery followed by postoperative radiotherapy. Neither METSSS nor SORG-MLA was used at the point of care to aid clinical decision-making during the treatment period. Survival was retrospectively estimated by these two models to test their potential for providing survival probabilities. We first compared SORG to METSSS in the entire population. Then, we repeated the comparison in patients who received local treatment with palliative radiation alone. We assessed model performance by area under the receiver operating characteristic curve (AUROC), calibration analysis, Brier score, and decision curve analysis (DCA). The AUROC measures discrimination, which is the ability to distinguish patients with the event of interest (such as death at a particular time point) from those without. AUROC typically ranges from 0.5 to 1.0, with 0.5 indicating random guessing and 1.0 a perfect prediction, and in general, an AUROC of ≥ 0.7 indicates adequate discrimination for clinical use. Calibration refers to the agreement between the predicted outcomes (in this case, survival probabilities) and the actual outcomes, with a perfect calibration curve having an intercept of 0 and a slope of 1. A positive intercept indicates that the actual survival is generally underestimated by the prediction model, and a negative intercept suggests the opposite (overestimation). When comparing models, an intercept closer to 0 typically indicates better calibration. Calibration can also be summarized as log(O:E), the logarithm scale of the ratio of observed (O) to expected (E) survivors. A log(O:E) > 0 signals an underestimation (the observed survival is greater than the predicted survival); and a log(O:E) < 0 indicates the opposite (the observed survival is lower than the predicted survival). A model with a log(O:E) closer to 0 is generally considered better calibrated. The Brier score is the mean squared difference between the model predictions and the observed outcomes, and it ranges from 0 (best prediction) to 1 (worst prediction). The Brier score captures both discrimination and calibration, and it is considered a measure of overall model performance. In Brier score analysis, the "null model" assigns a predicted probability equal to the prevalence of the outcome and represents a model that adds no new information. A prediction model should achieve a Brier score at least lower than the null-model Brier score to be considered as useful. The DCA was developed as a method to determine whether using a model to inform treatment decisions would do more good than harm. It plots the net benefit of making decisions based on the model's predictions across all possible risk thresholds (or cost-to-benefit ratios) in relation to the two default strategies of treating all or no patients. The care provider can decide on an acceptable risk threshold for the proposed treatment in an individual and assess the corresponding net benefit to determine whether consulting with the model is superior to adopting the default strategies. Finally, we examined whether laboratory data, which were not included in the METSSS model, would have been independently associated with survival after controlling for the METSSS model's predictions by using the multivariable logistic and Cox proportional hazards regression analyses.
Between the two models, only SORG-MLA achieved adequate discrimination (an AUROC of > 0.7) in the entire cohort (of patients treated operatively or with radiation alone) and in the subgroup of patients treated with palliative radiotherapy alone. SORG-MLA outperformed METSSS by a wide margin on discrimination, calibration, and Brier score analyses in not only the entire cohort but also the subgroup of patients whose local treatment consisted of radiotherapy alone. In both the entire cohort and the subgroup, DCA demonstrated that SORG-MLA provided more net benefit compared with the two default strategies (of treating all or no patients) and compared with METSSS when risk thresholds ranged from 0.2 to 0.9 at both 90 days and 1 year, indicating that using SORG-MLA as a decision-making aid was beneficial when a patient's individualized risk threshold for opting for treatment was 0.2 to 0.9. Higher albumin, lower alkaline phosphatase, lower calcium, higher hemoglobin, lower international normalized ratio, higher lymphocytes, lower neutrophils, lower neutrophil-to-lymphocyte ratio, lower platelet-to-lymphocyte ratio, higher sodium, and lower white blood cells were independently associated with better 1-year and overall survival after adjusting for the predictions made by METSSS.
Based on these discoveries, clinicians might choose to consult SORG-MLA instead of METSSS for survival estimation in patients with long-bone metastases presenting for evaluation of local treatment. Basing a treatment decision on the predictions of SORG-MLA could be beneficial when a patient's individualized risk threshold for opting to undergo a particular treatment strategy ranged from 0.2 to 0.9. Future studies might investigate relevant laboratory items when constructing or refining a survival estimation model because these data demonstrated prognostic value independent of the predictions of the METSSS model, and future studies might also seek to keep these models up to date using data from diverse, contemporary patients undergoing both modern operative and nonoperative treatments.
Level III, diagnostic study.
Lee CC
,Chen CW
,Yen HK
,Lin YP
,Lai CY
,Wang JL
,Groot OQ
,Janssen SJ
,Schwab JH
,Hsu FM
,Lin WH
... -
《-》