-
Strategies for enhancing the implementation of school-based policies or practices targeting diet, physical activity, obesity, tobacco or alcohol use.
A range of school-based interventions are effective in improving student diet and physical activity (e.g. school food policy interventions and classroom physical activity interventions), and reducing obesity, tobacco use and/or alcohol use (e.g. tobacco control programmes and alcohol education programmes). However, schools are frequently unsuccessful in implementing such evidence-based interventions.
The primary review objective is to evaluate the effectiveness of strategies aiming to improve school implementation of interventions to address students' (aged 5 to 18 years) diet, physical activity, obesity, tobacco use and/or alcohol use. The secondary objectives are to: 1. determine whether the effects are different based on the characteristics of the intervention including school type and the health behaviour or risk factor targeted by the intervention; 2. describe any unintended consequences and adverse effects of strategies on schools, school staff or students; and 3. describe the cost or cost-effectiveness of strategies.
We searched CENTRAL, MEDLINE (Ovid), Embase (Ovid), five additional databases, the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), and the US National Institutes of Health registry (clinicaltrials.gov). The latest search was between 1 May 2021 and 30 June 2023 to identify any relevant trials published since the last published review.
We defined 'implementation' as the use of strategies to adopt and integrate evidence-based health interventions and to change practice patterns within specific settings. We included any randomised controlled trial (RCT) or cluster-RCT conducted on any scale, in a school setting, with a parallel control group that compared a strategy to improve the implementation of policies or practices to address diet, physical activity, obesity, tobacco use and/or alcohol use by students (aged 5 to 18 years) to no active implementation strategy (i.e. no intervention, inclusive of usual practice, minimal support) or a different implementation strategy.
We used standard Cochrane methods. Given the large number of outcomes reported, we selected and included the effects of a single outcome measure for each trial for the primary outcome using a decision hierarchy (i.e. continuous over dichotomous, most valid, total score over subscore). Where possible, we calculated standardised mean differences (SMDs) to account for variable outcome measures with 95% confidence intervals (CI). We conducted meta-analyses using a random-effects model. Where we could not combine data in meta-analysis, we followed recommended Cochrane methods and reported results in accordance with 'Synthesis without meta-analysis' (SWiM) guidelines. We conducted assessments of risk of bias and evaluated the certainty of evidence (GRADE approach) using Cochrane procedures.
We included an additional 14 trials in this update, bringing the total number of included trials in the review to 39 trials with 83 trial arms and 6489 participants. Of these, the majority were conducted in Australia and the USA (n = 15 each). Nine were RCTs and 30 were cluster-RCTs. Twelve trials tested strategies to implement healthy eating practices; 17 physical activity, two tobacco, one alcohol, and seven a combination of risk factors. All trials used multiple implementation strategies, the most common being educational materials, educational meetings, and education outreach visits, or academic detailing. Of the 39 included trials, we judged 26 as having high risks of bias, 11 as having some concerns, and two as having low risk of bias across all domains. Pooled analyses found, relative to a control (no active implementation strategy), the use of implementation strategies probably results in a large increase in the implementation of interventions in schools (SMD 0.95, 95% CI 0.71, 1.19; I2 = 78%; 30 trials, 4912 participants; moderate-certainty evidence). This is equivalent to a 0.76 increase in the implementation of seven physical activity intervention components when the SMD is re-expressed using an implementation measure from a selected included trial. Subgroup analyses by school type and targeted health behaviour or risk factor did not identify any differential effects, and only one study was included that was implemented at scale. Compared to a control (no active implementation strategy), no unintended consequences or adverse effects of interventions were identified in the 11 trials that reported assessing them (1595 participants; moderate-certainty evidence). Nine trials compared costs between groups with and without an implementation strategy and the results of these comparisons were mixed (2136 participants; low-certainty evidence). A lack of consistent terminology describing implementation strategies was an important limitation of the review.
We found the use of implementation strategies probably results in large increases in implementation of interventions targeting healthy eating, physical activity, tobacco and/or alcohol use. While the effectiveness of individual implementation strategies could not be determined, such examination will likely be possible in future updates as data from new trials can be synthesised. Such research will further guide efforts to facilitate the translation of evidence into practice in this setting. The review will be maintained as a living systematic review.
Lee DC
,O'Brien KM
,McCrabb S
,Wolfenden L
,Tzelepis F
,Barnes C
,Yoong S
,Bartlem KM
,Hodder RK
... -
《Cochrane Database of Systematic Reviews》
-
Strategies for enhancing the implementation of school-based policies or practices targeting diet, physical activity, obesity, tobacco or alcohol use.
Several school-based interventions are effective in improving child diet and physical activity, and preventing excessive weight gain, and tobacco or harmful alcohol use. However, schools are frequently unsuccessful in implementing such evidence-based interventions.
1. To evaluate the benefits and harms of strategies aiming to improve school implementation of interventions to address student diet, physical activity, tobacco or alcohol use, and obesity. 2. To evaluate the benefits and harms of strategies to improve intervention implementation on measures of student diet, physical activity, obesity, tobacco use or alcohol use; describe their cost or cost-effectiveness; and any harms of strategies on schools, school staff or students.
We used standard, extensive Cochrane search methods. The latest search was between 1 September 2016 and 30 April 2021 to identify any relevant trials published since the last published review.
We defined 'Implementation' as the use of strategies to adopt and integrate evidence-based health interventions and to change practice patterns within specific settings. We included any trial (randomised controlled trial (RCT) or non-randomised controlled trial (non-RCT)) conducted at any scale, with a parallel control group that compared a strategy to implement policies or practices to address diet, physical activity, overweight or obesity, tobacco or alcohol use by students to 'no intervention', 'usual' practice or a different implementation strategy.
We used standard Cochrane methods. Given the large number of outcomes reported, we selected and included the effects of a single outcome measure for each trial for the primary (implementation) and secondary (student health behaviour and obesity) outcomes using a decision hierarchy. Where possible, we calculated standardised mean differences (SMDs) to account for variable outcome measures with 95% confidence intervals (CI). For RCTs, we conducted meta-analyses of primary and secondary outcomes using a random-effects model, or in instances where there were between two and five studies, a fixed-effect model. The synthesis of the effects for non-randomised studies followed the 'Synthesis without meta-analysis' (SWiM) guidelines.
We included an additional 11 trials in this update bringing the total number of included studies in the review to 38. Of these, 22 were conducted in the USA. Twenty-six studies used RCT designs. Seventeen trials tested strategies to implement healthy eating, 12 physical activity and six a combination of risk factors. Just one trial sought to increase the implementation of interventions to delay initiation or reduce the consumption of alcohol. All trials used multiple implementation strategies, the most common being educational materials, educational outreach and educational meetings. The overall certainty of evidence was low and ranged from very low to moderate for secondary review outcomes. Pooled analyses of RCTs found, relative to a control, the use of implementation strategies may result in a large increase in the implementation of interventions in schools (SMD 1.04, 95% CI 0.74 to 1.34; 22 RCTs, 1917 participants; low-certainty evidence). For secondary outcomes we found, relative to control, the use of implementation strategies to support intervention implementation may result in a slight improvement on measures of student diet (SMD 0.08, 95% CI 0.02 to 0.15; 11 RCTs, 16,649 participants; low-certainty evidence) and physical activity (SMD 0.09, 95% CI -0.02 to 0.19; 9 RCTs, 16,389 participants; low-certainty evidence). The effects on obesity probably suggest little to no difference (SMD -0.02, 95% CI -0.05 to 0.02; 8 RCTs, 18,618 participants; moderate-certainty evidence). The effects on tobacco use are very uncertain (SMD -0.03, 95% CIs -0.23 to 0.18; 3 RCTs, 3635 participants; very low-certainty evidence). One RCT assessed measures of student alcohol use and found strategies to support implementation may result in a slight increase in use (odds ratio 1.10, 95% CI 0.77 to 1.56; P = 0.60; 2105 participants). Few trials reported the economic evaluations of implementation strategies, the methods of which were heterogeneous and evidence graded as very uncertain. A lack of consistent terminology describing implementation strategies was an important limitation of the review.
The use of implementation strategies may result in large increases in implementation of interventions, and slight improvements in measures of student diet, and physical activity. Further research is required to assess the impact of implementation strategies on such behavioural- and obesity-related outcomes, including on measures of alcohol use, where the findings of one trial suggest it may slightly increase student risk. Given the low certainty of the available evidence for most measures further research is required to guide efforts to facilitate the translation of evidence into practice in this setting.
Wolfenden L
,McCrabb S
,Barnes C
,O'Brien KM
,Ng KW
,Nathan NK
,Sutherland R
,Hodder RK
,Tzelepis F
,Nolan E
,Williams CM
,Yoong SL
... -
《Cochrane Database of Systematic Reviews》
-
Interventions implemented through sporting organisations for promoting healthy behaviour or improving health outcomes.
Chronic diseases are the leading cause of mortality and morbidity worldwide. Much of this burden can be prevented by adopting healthy behaviours and reducing chronic disease risk factors. Settings-based approaches to address chronic disease risk factors are recommended globally. Sporting organisations are highly prevalent, and engage many people in many countries. As such, they represent an ideal setting for public health interventions to promote health. However, there is currently limited evidence of their impact on healthy behaviour and health outcomes as previous systematic reviews are either limited in their scope (e.g. restricted to professional sporting organisations), or are out of date.
Primary: to assess the benefits and harms of interventions implemented through sporting organisations to promote healthy behaviours (including physical activity, healthy diet) or reduce health risk behaviours (including alcohol consumption, tobacco use). Secondary: to assess the benefits and harms of these interventions to promote health outcomes (e.g. weight), other health-related behaviours (e.g. help-seeking behaviour) or health-related knowledge; to determine whether benefits and harms differ based on the characteristics of the interventions, including target population and intervention duration; to assess unintended adverse consequences of sporting organisation interventions; and to describe their cost or cost-effectiveness.
We searched CENTRAL, MEDLINE, Embase, one other database and two clinical trial registries, from inception to May 2024, to identify eligible trials. We searched Google Scholar in May 2024. We did not impose language or publication status restrictions. We also searched reference lists of included trials for other potentially eligible trials.
We included randomised controlled trials (RCTs), including cluster-RCTs, of any intervention conducted within or using a sporting organisation for access to a target group, that aimed to improve a health behaviour primary outcome or a secondary review outcome, and had a parallel control group (no intervention, alternative intervention). Eligible participants were any individual exposed to an intervention involving a sporting organisation, including players, members, coaches, and supporters.
We used standard methodological procedures expected by Cochrane. We conducted random-effects meta-analyses to synthesise results where we could pool data from at least two trials. Where we could not conduct meta-analysis, we followed Cochrane guidance for synthesis using other methods and reported results according to the Synthesis Without Meta-analysis (SWiM) guidance.
We included 20 trials (42 trial arms, 8179 participants) conducted in high-income countries, and identified four ongoing trials and four trials awaiting classification. There was considerable heterogeneity in the type of participants, interventions and outcomes assessed across trials. Included trials primarily targeted sporting organisation members (eight trials) or supporters (eight trials), males only (11 trials) and adults (14 trials). Football clubs (e.g. soccer, American football, Australian football league) were the most common intervention setting (15 trials), and interventions targeted various combinations of health behaviours, knowledge and health outcomes. Fourteen trials (10 RCTs and four cluster-RCTs) assessed the impact of a sporting organisation intervention on a primary outcome: physical activity (nine trials); diet (six trials); alcohol consumption (11 trials); and tobacco use (two trials). For RCTs, we assessed the risk of bias for primary outcomes (physical activity, diet, alcohol consumption) and unintended adverse consequences as being at low risk of bias (four outcomes), some concerns (one outcome) or high risk of bias (32 outcomes), due to outcomes being self-reported. For cluster-RCTs, we assessed the risk of bias for all primary outcomes (alcohol consumption, tobacco use) as high risk (eight outcomes), due to outcomes being self-reported. Sporting organisation interventions versus control probably have a small positive effect on the amount of physical activity per day, equivalent to approximately 7.4 minutes of moderate-to-vigorous physical activity (MVPA) per day (standardised mean difference (SMD) 0.36, 95% confidence interval (CI) 0.22 to 0.49; I2 = 3%; 4 trials, 1213 participants; moderate-certainty evidence) and may not reduce sedentary behaviour (mean difference (MD) -15.18, 95% CI -30.82 to 0.47; I2 = 0%; 2 trials, 1047 participants; low-certainty evidence). Sporting organisation interventions versus control may have a moderate positive effect on fruit and vegetable consumption, equivalent to a score increase of 1.25 points on a 12-point scale for frequency of fruit and vegetable consumption (SMD 0.50, 95% CI 0.35 to 0.65; I2 = 0%; 5 trials, 1402 participants; low-certainty evidence). Sporting organisation interventions versus control may reduce sugary drink consumption (equivalent to a reduction of sugary drink consumption by 0.8 times per day), but the evidence is very uncertain (SMD -0.37, 95% CI -0.64 to -0.10; I2 = 0%; 2 trials, 225 participants; very low-certainty evidence). Sporting organisation interventions versus control may have little to no effect on alcohol consumption (equivalent to a reduction of 0.38 units of alcohol consumed per week), but the evidence is very uncertain (MD -0.38, 95% CI -1.00 to 0.24; I2 = 78%; 7 trials, 2313 participants; very low-certainty evidence). Two trials that could not be synthesised reported equivocal findings on tobacco use (low-certainty evidence). The evidence is very uncertain about the effect of sporting club interventions on unintended adverse consequences. Five trials assessed this outcome, with two reporting that there were no adverse consequences, one reporting only non-serious adverse consequences, and two reporting that there were serious unintended adverse consequences in less than 1% of participants.
Overall, sporting organisation interventions probably increase MVPA by 7.4 minutes per day, may result in little to no difference in sedentary behaviour, and may increase fruit and vegetable consumption. The evidence is very uncertain about whether sporting organisation interventions decrease sugary drink and alcohol consumption. Findings for tobacco use and unintended adverse consequences were equivocal in the few trials reporting these; thus, the evidence was very uncertain. These findings should be interpreted in the context of the heterogeneity of the interventions, participants and sporting organisations for some outcomes.
Hodder RK
,O'Brien KM
,Al-Gobari M
,Flatz A
,Borchard A
,Klerings I
,Clinton-McHarg T
,Kingsland M
,von Elm E
... -
《Cochrane Database of Systematic Reviews》
-
Defining the optimum strategy for identifying adults and children with coeliac disease: systematic review and economic modelling.
Elwenspoek MM
,Thom H
,Sheppard AL
,Keeney E
,O'Donnell R
,Jackson J
,Roadevin C
,Dawson S
,Lane D
,Stubbs J
,Everitt H
,Watson JC
,Hay AD
,Gillett P
,Robins G
,Jones HE
,Mallett S
,Whiting PF
... -
《-》
-
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.
About 20-30% of older adults (≥ 65 years old) experience one or more falls each year, and falls are associated with substantial burden to the health care system, individuals, and families from resulting injuries, fractures, and reduced functioning and quality of life. Many interventions for preventing falls have been studied, and their effectiveness, factors relevant to their implementation, and patient preferences may determine which interventions to use in primary care. The aim of this set of reviews was to inform recommendations by the Canadian Task Force on Preventive Health Care (task force) on fall prevention interventions. We undertook three systematic reviews to address questions about the following: (i) the benefits and harms of interventions, (ii) how patients weigh the potential outcomes (outcome valuation), and (iii) patient preferences for different types of interventions, and their attributes, shown to offer benefit (intervention preferences).
We searched four databases for benefits and harms (MEDLINE, Embase, AgeLine, CENTRAL, to August 25, 2023) and three for outcome valuation and intervention preferences (MEDLINE, PsycINFO, CINAHL, to June 9, 2023). For benefits and harms, we relied heavily on a previous review for studies published until 2016. We also searched trial registries, references of included studies, and recent reviews. Two reviewers independently screened studies. The population of interest was community-dwelling adults ≥ 65 years old. We did not limit eligibility by participant fall history. The task force rated several outcomes, decided on their eligibility, and provided input on the effect thresholds to apply for each outcome (fallers, falls, injurious fallers, fractures, hip fractures, functional status, health-related quality of life, long-term care admissions, adverse effects, serious adverse effects). For benefits and harms, we included a broad range of non-pharmacological interventions relevant to primary care. Although usual care was the main comparator of interest, we included studies comparing interventions head-to-head and conducted a network meta-analysis (NMAs) for each outcome, enabling analysis of interventions lacking direct comparisons to usual care. For benefits and harms, we included randomized controlled trials with a minimum 3-month follow-up and reporting on one of our fall outcomes (fallers, falls, injurious fallers); for the other questions, we preferred quantitative data but considered qualitative findings to fill gaps in evidence. No date limits were applied for benefits and harms, whereas for outcome valuation and intervention preferences we included studies published in 2000 or later. All data were extracted by one trained reviewer and verified for accuracy and completeness. For benefits and harms, we relied on the previous review team's risk-of-bias assessments for benefit outcomes, but otherwise, two reviewers independently assessed the risk of bias (within and across study). For the other questions, one reviewer verified another's assessments. Consensus was used, with adjudication by a lead author when necessary. A coding framework, modified from the ProFANE taxonomy, classified interventions and their attributes (e.g., supervision, delivery format, duration/intensity). For benefit outcomes, we employed random-effects NMA using a frequentist approach and a consistency model. Transitivity and coherence were assessed using meta-regressions and global and local coherence tests, as well as through graphical display and descriptive data on the composition of the nodes with respect to major pre-planned effect modifiers. We assessed heterogeneity using prediction intervals. For intervention-related adverse effects, we pooled proportions except for vitamin D for which we considered data in the control groups and undertook random-effects pairwise meta-analysis using a relative risk (any adverse effects) or risk difference (serious adverse effects). For outcome valuation, we pooled disutilities (representing the impact of a negative event, e.g. fall, on one's usual quality of life, with 0 = no impact and 1 = death and ~ 0.05 indicating important disutility) from the EQ-5D utility measurement using the inverse variance method and a random-effects model and explored heterogeneity. When studies only reported other data, we compared the findings with our main analysis. For intervention preferences, we used a coding schema identifying whether there were strong, clear, no, or variable preferences within, and then across, studies. We assessed the certainty of evidence for each outcome using CINeMA for benefit outcomes and GRADE for all other outcomes.
A total of 290 studies were included across the reviews, with two studies included in multiple questions. For benefits and harms, we included 219 trials reporting on 167,864 participants and created 59 interventions (nodes). Transitivity and coherence were assessed as adequate. Across eight NMAs, the number of contributing trials ranged between 19 and 173, and the number of interventions ranged from 19 to 57. Approximately, half of the interventions in each network had at least low certainty for benefit. The fallers outcome had the highest number of interventions with moderate certainty for benefit (18/57). For the non-fall outcomes (fractures, hip fracture, long-term care [LTC] admission, functional status, health-related quality of life), many interventions had very low certainty evidence, often from lack of data. We prioritized findings from 21 interventions where there was moderate certainty for at least some benefit. Fourteen of these had a focus on exercise, the majority being supervised (for > 2 sessions) and of long duration (> 3 months), and with balance/resistance and group Tai Chi interventions generally having the most outcomes with at least low certainty for benefit. None of the interventions having moderate certainty evidence focused on walking. Whole-body vibration or home-hazard assessment (HHA) plus exercise provided to everyone showed moderate certainty for some benefit. No multifactorial intervention alone showed moderate certainty for any benefit. Six interventions only had very-low certainty evidence for the benefit outcomes. Two interventions had moderate certainty of harmful effects for at least one benefit outcome, though the populations across studies were at high risk for falls. Vitamin D and most single-component exercise interventions are probably associated with minimal adverse effects. Some uncertainty exists about possible adverse effects from other interventions. For outcome valuation, we included 44 studies of which 34 reported EQ-5D disutilities. Admission to long-term care had the highest disutility (1.0), but the evidence was rated as low certainty. Both fall-related hip (moderate certainty) and non-hip (low certainty) fracture may result in substantial disutility (0.53 and 0.57) in the first 3 months after injury. Disutility for both hip and non-hip fractures is probably lower 12 months after injury (0.16 and 0.19, with high and moderate certainty, respectively) compared to within the first 3 months. No study measured the disutility of an injurious fall. Fractures are probably more important than either falls (0.09 over 12 months) or functional status (0.12). Functional status may be somewhat more important than falls. For intervention preferences, 29 studies (9 qualitative) reported on 17 comparisons among single-component interventions showing benefit. Exercise interventions focusing on balance and/or resistance training appear to be clearly preferred over Tai Chi and other forms of exercise (e.g., yoga, aerobic). For exercise programs in general, there is probably variability among people in whether they prefer group or individual delivery, though there was high certainty that individual was preferred over group delivery of balance/resistance programs. Balance/resistance exercise may be preferred over education, though the evidence was low certainty. There was low certainty for a slight preference for education over cognitive-behavioral therapy, and group education may be preferred over individual education.
To prevent falls among community-dwelling older adults, evidence is most certain for benefit, at least over 1-2 years, from supervised, long-duration balance/resistance and group Tai Chi interventions, whole-body vibration, high-intensity/dose education or cognitive-behavioral therapy, and interventions of comprehensive multifactorial assessment with targeted treatment plus HHA, HHA plus exercise, or education provided to everyone. Adding other interventions to exercise does not appear to substantially increase benefits. Overall, effects appear most applicable to those with elevated fall risk. Choice among effective interventions that are available may best depend on individual patient preferences, though when implementing new balance/resistance programs delivering individual over group sessions when feasible may be most acceptable. Data on more patient-important outcomes including fall-related fractures and adverse effects would be beneficial, as would studies focusing on equity-deserving populations and on programs delivered virtually.
Not registered.
Pillay J
,Gaudet LA
,Saba S
,Vandermeer B
,Ashiq AR
,Wingert A
,Hartling L
... -
《Systematic Reviews》