Constructing a predictive model for early-onset sepsis in neonatal intensive care unit newborns based on SHapley Additive exPlanations explainable machine learning.

来自 PUBMED

作者:

Tan XZhang XChai JJi WRu JYang CZhou WBai JXiong Y

展开

摘要:

The clinical characteristics of neonatal sepsis (NS) are subtle and non-specific, posing a serious threat to the lives of newborn infants. Early-onset sepsis (EOS) is sepsis that occurs within 72 hours after birth, with a high mortality rate. Identifying key factors of NS and conducting early diagnosis are of great practical significance. Thus, we developed a robust machine learning (ML) model for the early prediction of EOS in neonates admitted to the neonatal intensive care unit (NICU), investigated the pivotal risk factors associated with EOS development, and provided interpretable insights into the model's predictions. A retrospective cohort study was conducted. This includes 668 newborns (EOS and non-EOS) admitted to the NICU of Bozhou People's Hospital from January to December 2023, excluding 72 newborns born more than three days ago and 166 newborns with medical record data missing more than 30%. Finally, 430 newborns (EOS and non-EOS) were included in the study. Clinical case data were meticulously analyzed, and the dataset was randomly partitioned, allocating 75% for model training and the remaining 25% for test. Data preprocessing was meticulously performed using R language, and the least absolute shrinkage and selection operator (LASSO) regression was implemented to select salient features, mitigating the risk of overfitting. Six ML models were leveraged to forecast the incidence of EOS in neonates. The predictive performance of these models was rigorously evaluated using the receiver operating characteristic (ROC) curve and precision-recall (PR) curve. Furthermore, the SHapley Additive exPlanations (SHAP) framework was employed to provide intuitive explanations for the predictions made by the Categorical Boosting (CatBoost) model, which emerged as the top performer. The ROC area under the curve (ROCAUC) of six ML models, CatBoost, random forest (RF), eXtreme Gradient Boosting (XGBoost), multilayer perceptron (MLP), support vector machine (SVM), logistic regression (LR) all exceeded 0.900 on the test set. Especially the CatBoost model exhibited superior performance, with favorable outcomes in calibration, decision curve analysis (DCA), and learning curves. Notably, the ROCAUC attained 0.975, and the area under the PR curve (PRAUC) reached 0.947, signifying a high degree of predictive accuracy. Utilizing the SHAP method, seven key features were identified and ranked by their importance: respiratory rate (RR), procalcitonin (PCT), nasal congestion (NC), yellow staining (YS), white blood cell count (WBC), fever, and amniotic fluid turbidity (AFT). By constructing a precision-oriented ML model and harnessing the SHAP method for interpretability, this study effectively identified crucial risk factors for EOS development in neonates. This approach enables early prediction of EOS risk, thereby facilitating timely and targeted clinical interventions for precise diagnosis and treatment.

收起

展开

DOI:

10.21037/tp-24-278

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

Translational Pediatrics

影响因子:4.043

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读