-
Constructing a predictive model for early-onset sepsis in neonatal intensive care unit newborns based on SHapley Additive exPlanations explainable machine learning.
The clinical characteristics of neonatal sepsis (NS) are subtle and non-specific, posing a serious threat to the lives of newborn infants. Early-onset sepsis (EOS) is sepsis that occurs within 72 hours after birth, with a high mortality rate. Identifying key factors of NS and conducting early diagnosis are of great practical significance. Thus, we developed a robust machine learning (ML) model for the early prediction of EOS in neonates admitted to the neonatal intensive care unit (NICU), investigated the pivotal risk factors associated with EOS development, and provided interpretable insights into the model's predictions.
A retrospective cohort study was conducted. This includes 668 newborns (EOS and non-EOS) admitted to the NICU of Bozhou People's Hospital from January to December 2023, excluding 72 newborns born more than three days ago and 166 newborns with medical record data missing more than 30%. Finally, 430 newborns (EOS and non-EOS) were included in the study. Clinical case data were meticulously analyzed, and the dataset was randomly partitioned, allocating 75% for model training and the remaining 25% for test. Data preprocessing was meticulously performed using R language, and the least absolute shrinkage and selection operator (LASSO) regression was implemented to select salient features, mitigating the risk of overfitting. Six ML models were leveraged to forecast the incidence of EOS in neonates. The predictive performance of these models was rigorously evaluated using the receiver operating characteristic (ROC) curve and precision-recall (PR) curve. Furthermore, the SHapley Additive exPlanations (SHAP) framework was employed to provide intuitive explanations for the predictions made by the Categorical Boosting (CatBoost) model, which emerged as the top performer.
The ROC area under the curve (ROCAUC) of six ML models, CatBoost, random forest (RF), eXtreme Gradient Boosting (XGBoost), multilayer perceptron (MLP), support vector machine (SVM), logistic regression (LR) all exceeded 0.900 on the test set. Especially the CatBoost model exhibited superior performance, with favorable outcomes in calibration, decision curve analysis (DCA), and learning curves. Notably, the ROCAUC attained 0.975, and the area under the PR curve (PRAUC) reached 0.947, signifying a high degree of predictive accuracy. Utilizing the SHAP method, seven key features were identified and ranked by their importance: respiratory rate (RR), procalcitonin (PCT), nasal congestion (NC), yellow staining (YS), white blood cell count (WBC), fever, and amniotic fluid turbidity (AFT).
By constructing a precision-oriented ML model and harnessing the SHAP method for interpretability, this study effectively identified crucial risk factors for EOS development in neonates. This approach enables early prediction of EOS risk, thereby facilitating timely and targeted clinical interventions for precise diagnosis and treatment.
Tan X
,Zhang X
,Chai J
,Ji W
,Ru J
,Yang C
,Zhou W
,Bai J
,Xiong Y
... -
《Translational Pediatrics》
-
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
Survival estimation for patients with symptomatic skeletal metastases ideally should be made before a type of local treatment has already been determined. Currently available survival prediction tools, however, were generated using data from patients treated either operatively or with local radiation alone, raising concerns about whether they would generalize well to all patients presenting for assessment. The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA), trained with institution-based data of surgically treated patients, and the Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy model (METSSS), trained with registry-based data of patients treated with radiotherapy alone, are two of the most recently developed survival prediction models, but they have not been tested on patients whose local treatment strategy is not yet decided.
(1) Which of these two survival prediction models performed better in a mixed cohort made up both of patients who received local treatment with surgery followed by radiotherapy and who had radiation alone for symptomatic bone metastases? (2) Which model performed better among patients whose local treatment consisted of only palliative radiotherapy? (3) Are laboratory values used by SORG-MLA, which are not included in METSSS, independently associated with survival after controlling for predictions made by METSSS?
Between 2010 and 2018, we provided local treatment for 2113 adult patients with skeletal metastases in the extremities at an urban tertiary referral academic medical center using one of two strategies: (1) surgery followed by postoperative radiotherapy or (2) palliative radiotherapy alone. Every patient's survivorship status was ascertained either by their medical records or the national death registry from the Taiwanese National Health Insurance Administration. After applying a priori designated exclusion criteria, 91% (1920) were analyzed here. Among them, 48% (920) of the patients were female, and the median (IQR) age was 62 years (53 to 70 years). Lung was the most common primary tumor site (41% [782]), and 59% (1128) of patients had other skeletal metastases in addition to the treated lesion(s). In general, the indications for surgery were the presence of a complete pathologic fracture or an impending pathologic fracture, defined as having a Mirels score of ≥ 9, in patients with an American Society of Anesthesiologists (ASA) classification of less than or equal to IV and who were considered fit for surgery. The indications for radiotherapy were relief of pain, local tumor control, prevention of skeletal-related events, and any combination of the above. In all, 84% (1610) of the patients received palliative radiotherapy alone as local treatment for the target lesion(s), and 16% (310) underwent surgery followed by postoperative radiotherapy. Neither METSSS nor SORG-MLA was used at the point of care to aid clinical decision-making during the treatment period. Survival was retrospectively estimated by these two models to test their potential for providing survival probabilities. We first compared SORG to METSSS in the entire population. Then, we repeated the comparison in patients who received local treatment with palliative radiation alone. We assessed model performance by area under the receiver operating characteristic curve (AUROC), calibration analysis, Brier score, and decision curve analysis (DCA). The AUROC measures discrimination, which is the ability to distinguish patients with the event of interest (such as death at a particular time point) from those without. AUROC typically ranges from 0.5 to 1.0, with 0.5 indicating random guessing and 1.0 a perfect prediction, and in general, an AUROC of ≥ 0.7 indicates adequate discrimination for clinical use. Calibration refers to the agreement between the predicted outcomes (in this case, survival probabilities) and the actual outcomes, with a perfect calibration curve having an intercept of 0 and a slope of 1. A positive intercept indicates that the actual survival is generally underestimated by the prediction model, and a negative intercept suggests the opposite (overestimation). When comparing models, an intercept closer to 0 typically indicates better calibration. Calibration can also be summarized as log(O:E), the logarithm scale of the ratio of observed (O) to expected (E) survivors. A log(O:E) > 0 signals an underestimation (the observed survival is greater than the predicted survival); and a log(O:E) < 0 indicates the opposite (the observed survival is lower than the predicted survival). A model with a log(O:E) closer to 0 is generally considered better calibrated. The Brier score is the mean squared difference between the model predictions and the observed outcomes, and it ranges from 0 (best prediction) to 1 (worst prediction). The Brier score captures both discrimination and calibration, and it is considered a measure of overall model performance. In Brier score analysis, the "null model" assigns a predicted probability equal to the prevalence of the outcome and represents a model that adds no new information. A prediction model should achieve a Brier score at least lower than the null-model Brier score to be considered as useful. The DCA was developed as a method to determine whether using a model to inform treatment decisions would do more good than harm. It plots the net benefit of making decisions based on the model's predictions across all possible risk thresholds (or cost-to-benefit ratios) in relation to the two default strategies of treating all or no patients. The care provider can decide on an acceptable risk threshold for the proposed treatment in an individual and assess the corresponding net benefit to determine whether consulting with the model is superior to adopting the default strategies. Finally, we examined whether laboratory data, which were not included in the METSSS model, would have been independently associated with survival after controlling for the METSSS model's predictions by using the multivariable logistic and Cox proportional hazards regression analyses.
Between the two models, only SORG-MLA achieved adequate discrimination (an AUROC of > 0.7) in the entire cohort (of patients treated operatively or with radiation alone) and in the subgroup of patients treated with palliative radiotherapy alone. SORG-MLA outperformed METSSS by a wide margin on discrimination, calibration, and Brier score analyses in not only the entire cohort but also the subgroup of patients whose local treatment consisted of radiotherapy alone. In both the entire cohort and the subgroup, DCA demonstrated that SORG-MLA provided more net benefit compared with the two default strategies (of treating all or no patients) and compared with METSSS when risk thresholds ranged from 0.2 to 0.9 at both 90 days and 1 year, indicating that using SORG-MLA as a decision-making aid was beneficial when a patient's individualized risk threshold for opting for treatment was 0.2 to 0.9. Higher albumin, lower alkaline phosphatase, lower calcium, higher hemoglobin, lower international normalized ratio, higher lymphocytes, lower neutrophils, lower neutrophil-to-lymphocyte ratio, lower platelet-to-lymphocyte ratio, higher sodium, and lower white blood cells were independently associated with better 1-year and overall survival after adjusting for the predictions made by METSSS.
Based on these discoveries, clinicians might choose to consult SORG-MLA instead of METSSS for survival estimation in patients with long-bone metastases presenting for evaluation of local treatment. Basing a treatment decision on the predictions of SORG-MLA could be beneficial when a patient's individualized risk threshold for opting to undergo a particular treatment strategy ranged from 0.2 to 0.9. Future studies might investigate relevant laboratory items when constructing or refining a survival estimation model because these data demonstrated prognostic value independent of the predictions of the METSSS model, and future studies might also seek to keep these models up to date using data from diverse, contemporary patients undergoing both modern operative and nonoperative treatments.
Level III, diagnostic study.
Lee CC
,Chen CW
,Yen HK
,Lin YP
,Lai CY
,Wang JL
,Groot OQ
,Janssen SJ
,Schwab JH
,Hsu FM
,Lin WH
... -
《-》
-
Genedrive kit for detecting single nucleotide polymorphism m.1555A>G in neonates and their mothers: a systematic review and cost-effectiveness analysis.
Shabaninejad H
,Kenny RP
,Robinson T
,Stoniute A
,O'Keefe H
,Still M
,Thornton C
,Pearson F
,Beyer F
,Meader N
... -
《-》
-
Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning.
Precise evaluation of pathological complete response (pCR) is essential for determining the prognosis of patients with locally advanced rectal cancer (LARC) undergoing neoadjuvant chemoradiotherapy (NCRT) and can offer clues for the selection of subsequent treatment strategies. Most current predictive models for pCR focus primarily on pre-treatment factors, neglecting the dynamic systemic changes that occur during neoadjuvant chemoradiotherapy, and are constrained by low accuracy and lack of integrity.
This study devised a novel predictor of pCR using dynamic alterations in systemic inflammation-nutritional marker indexes (SINI) during neoadjuvant therapy and developed a machine-learning model to predict pCR.
Two cohorts of patients with LARC from center one from 2012 to 2017 and from center two from 2020 to 2023 were integrated for analysis. This study compared dynamic changes in blood indexes before and after neoadjuvant therapy and surgical operation. A least absolute shrinkage and selection operator (LASSO) regression analysis was conducted to mitigate collinearity and identify key indexes, constructing the SINI. Univariate and multiple logistic regression analyses were used to identify the independent risk factors associated with pCR. Additionally, 10 machine learning algorithms were employed to develop predictive models to assess risk. The hyperparameters of the machine learning models were optimized using a random search and 10-fold cross-validation. The models were assessed by examining various metrics, including the area under the receiver operating characteristic curves (AUC), the area under the precision-recall curve (AUPRC), decision curve analysis, calibration curves, and the precision and accuracy of the internal and external validation cohorts. Additionally, Shapley's additive explanations (SHAP) were employed to interpret the machine learning models.
The study cohort comprised 677 patients from the center one and 224 patients from the center two. Six key indexes were identified, and a predictive index, SINI, was constructed. Univariate and multiple logistic regression analyses revealed that SINI, clinical T-stage, clinical N-stage, tumor size, and the distance from the anal verge were independent risk factors for pCR in patients with LARC following NCRT. The mean AUC value of the extreme gradient boosting (XGB) model in the 10-fold cross-validation of the training set was 0.877. The XGB model demonstrated superior performance in the internal and external validation sets. Specifically, in the internal test set, the XGB model achieved an AUC of 0.86, AUPRC of 0.707, accuracy of 0.82, and precision of 0.80. In the external validation set, the XGB model exhibited an AUC of 0.83, AUPRC of 0.702, accuracy of 0.81, and precision of 0.81. Additionally, the predictions generated by the XGB model were analyzed using SHAP.
This study involved developing and validating an XGB model using SINI to predict pCR in patients with LARC. Besides, a SINI-based machine learning model shows promise in accurately predicting pCR following NCRT in patients with resectable LARC, offering valuable insights for personalized treatment approaches.
Wang Y
,Pan Z
,Li S
,Cai H
,Huang Y
,Zhuang J
,Liu X
,Lu X
,Guan G
... -
《-》
-
A Multivariable Prediction Model for Mild Cognitive Impairment and Dementia: Algorithm Development and Validation.
Mild cognitive impairment (MCI) poses significant challenges in early diagnosis and timely intervention. Underdiagnosis, coupled with the economic and social burden of dementia, necessitates more precise detection methods. Machine learning (ML) algorithms show promise in managing complex data for MCI and dementia prediction.
This study assessed the predictive accuracy of ML models in identifying the onset of MCI and dementia using the Korean Longitudinal Study of Aging (KLoSA) dataset.
This study used data from the KLoSA, a comprehensive biennial survey that tracks the demographic, health, and socioeconomic aspects of middle-aged and older Korean adults from 2018 to 2020. Among the 6171 initial households, 4975 eligible older adult participants aged 60 years or older were selected after excluding individuals based on age and missing data. The identification of MCI and dementia relied on self-reported diagnoses, with sociodemographic and health-related variables serving as key covariates. The dataset was categorized into training and test sets to predict MCI and dementia by using multiple models, including logistic regression, light gradient-boosting machine, XGBoost (extreme gradient boosting), CatBoost, random forest, gradient boosting, AdaBoost, support vector classifier, and k-nearest neighbors, and the training and test sets were used to evaluate predictive performance. The performance was assessed using the area under the receiver operating characteristic curve (AUC). Class imbalances were addressed via weights. Shapley additive explanation values were used to determine the contribution of each feature to the prediction rate.
Among the 4975 participants, the best model for predicting MCI onset was random forest, with a median AUC of 0.6729 (IQR 0.3883-0.8152), followed by k-nearest neighbors with a median AUC of 0.5576 (IQR 0.4555-0.6761) and support vector classifier with a median AUC of 0.5067 (IQR 0.3755-0.6389). For dementia onset prediction, the best model was XGBoost, achieving a median AUC of 0.8185 (IQR 0.8085-0.8285), closely followed by light gradient-boosting machine with a median AUC of 0.8069 (IQR 0.7969-0.8169) and AdaBoost with a median AUC of 0.8007 (IQR 0.7907-0.8107). The Shapley values highlighted pain in everyday life, being widowed, living alone, exercising, and living with a partner as the strongest predictors of MCI. For dementia, the most predictive features were other contributing factors, education at the high school level, education at the middle school level, exercising, and monthly social engagement.
ML algorithms, especially XGBoost, exhibited the potential for predicting MCI onset using KLoSA data. However, no model has demonstrated robust accuracy in predicting MCI and dementia. Sociodemographic and health-related factors are crucial for initiating cognitive conditions, emphasizing the need for multifaceted predictive models for early identification and intervention. These findings underscore the potential and limitations of ML in predicting cognitive impairment in community-dwelling older adults.
Oh SS
,Kang B
,Hong D
,Kim JI
,Jeong H
,Song J
,Jeon M
... -
《JMIR Medical Informatics》