-
Fibroblast Activation Protein-α Expression in Cancer-Associated Fibroblasts Shows the Poor Survival of Colorectal Cancer via Immune-Mediated Pathways : Implications of FAP in Cancer-Associated Fibroblasts Link Immune Dysregulation to Adverse Survival in C
Cancer-associated fibroblasts (CAFs) and immune cells, the key components of the tumor microenvironment (TME), play critical roles in oncogenesis. Despite the recognized function of fibroblast activation protein-α (FAP), a specific biomarker of CAFs in cancer progression, its role in the survival of patients with colorectal cancer (CRC) and tumor immune microenvironment (TIME) remains unclear.
We investigated 180 pathological sections obtained from 178 consecutive patients with CRC who underwent surgical resection at Shiga University of Medical Science Hospital between January 2013 and December 2015. FAP expression levels and CD3 and CD8 densities at the invasive margin and center of tumor were assessed using immunohistochemical (IHC) staining. Furthermore, we used single-cell RNA sequencing (scRNA-seq) of CAFs in a separate cohort of 10 untreated patients with CRC derived from the Gene Expression Omnibus database.
According to IHC evaluation, high FAP expression in patients with CRC showed a correlation with reduced tumor-infiltrating lymphocyte (TIL) distribution and poor survival. Based on the FAP transcription levels obtained through scRNA-seq analysis, CAFs were grouped into high and low FAP expression groups. Elevated FAP expression was correlated with decreased expression of T- and B-cell biomarkers, suggesting an association with an immunosuppressive TME promotion. Several genes associated with cancer-related immune-mediated pathways (CXCL12, COL11A1, CCL11, and COL10A1) were significantly upregulated in FAP-positive CAFs.
This study highlights the effects of FAP expression on survival of patients with CRC, its interaction with TILs, and relevant signaling pathways, and underscores potential immunotherapeutic targets for future investigation.
Qin Y
,Miyake T
,Muramoto K
,Maekawa T
,Nishina Y
,Wang Y
,Shimizu T
,Tani M
... -
《-》
-
Spatial expression of fibroblast activation protein-α in clear cell renal cell carcinomas revealed by multiplex immunoprofiling analysis of the tumor microenvironment.
Clear cell renal cell carcinoma (ccRCC) is one of the most challenging neoplasms because of its phenotypic variability and intratumoral heterogeneity. Because of its variability, ccRCC is a good test bench for the application of new technological approaches to unveiling its intricacies. Multiplex immunofluorescence (mIF) is an emerging method that enables the simultaneous and detailed assessment of tumor and stromal cell subpopulations in a single tissue section. This novel approach represents a promising step forward for analyzing the microenvironmental cell composition and distribution across the tumor and understanding its possible interactions with tumor cells. This study provides the first characterization of the spatial distribution of fibroblast activation protein-α (FAP)-expressing cancer-associated fibroblasts (FAP + CAFs) in conjunction with lymphoid (CD4 + , CD8 + , CD4 + FOXP3 + , and CD20 +) and myeloid (CD68 +) cells in tissue sections from ccRCC in their early phases of evolution (n = 88). Both the tumor center and periphery were analyzed with mIF. FAP + CAFs and tumor-infiltrating lymphocytes (TILs) were significantly concentrated at the tumor periphery. Additionally, elevated percentages of FAP + CAFs were correlated with larger tumors and synchronous metastases. Increased levels of CD68 + and CD4 + FOXP3 + cells (above the 75th percentile) were linked to worse cancer-specific survival (CSS) in patients with ccRCC. Furthermore, significant correlations emerged among FAP + CAFs, TILs, and CD68 + cells, and the co-occurrence of elevated FAP + CAFs, T-cytotoxic (CD8 +), T-regulatory (CD4 + FOXP3 +) cells, and macrophages (CD68 +) at the tumor center were independently associated with worse CSS. These findings suggest that FAP + CAFs contribute to the aggressiveness of ccRCC, and their role is potentially mediated by their ability to foster an immunosuppressive environment within the renal tumor microenvironment.
Larrinaga G
,Redrado M
,Loizaga-Iriarte A
,Pérez-Fernández A
,Santos-Martín A
,Angulo JC
,Fernández JA
,Calvo A
,López JI
... -
《-》
-
Prognostic Value of Cancer-Associated Fibroblast Marker Expression in the Intratumoral and Marginal Areas of Soft Tissue Sarcoma.
The tumor microenvironment of sarcomas has not been studied in detail; in particular, little is known about cancer-associated fibroblasts (CAFs). Sarcoma cells are difficult to distinguish from CAFs, either histomorphologically or immunohistochemically.
We scored the expression of individual CAF markers (fibroblast-activating protein [FAP], CD10, and podoplanin) in the intratumoral and marginal areas of 133 sarcomas. We also examined the association between these markers, as well as the number of CD163-positive macrophages (i.e., tumor-associated macrophages), and clinical outcome.
In all cases, the log-rank test revealed that those with high marker scores and macrophage counts (except for marginal CD10+ CAFs) showed significantly worse disease-free survival (DFS). Grade 2/3 cases with high CAF scores (excluding the marginal FAP and CD10 scores) showed significantly worse DFS, whereas those with high intratumoral FAP/CD10 and marginal podoplanin scores showed significantly worse metastasis-free survival (MFS), and those with high intratumoral CD10 score showed significantly worse local recurrence-free survival (LFS). Multivariate analysis identified intratumoral CD10/podoplanin scores and marginal FAP/podoplanin scores as independent prognostic factors for DFS, intratumoral FAP/CD10 and marginal FAP/podoplanin/CD163-positive macrophage scores as independent prognostic factors for MFS, and the intratumoral podoplanin score as an independent prognostic factor for LFS. There was a weak-to-moderate correlation between each score and CD163-positive macrophage counts.
Patients with high CAF marker expression in the intratumoral and marginal areas have a poorer outcome.
The tumor microenvironment of sarcomas has not been studied in detail; in particular, little is known about cancer-associated fibroblasts (CAFs). Sarcoma cells are difficult to distinguish from CAFs, either histomorphologically or immunohistochemically.
We scored the expression of individual CAF markers (fibroblast-activating protein [FAP], CD10, and podoplanin) in the intratumoral and marginal areas of 133 sarcomas. We also examined the association between these markers, as well as the number of CD163-positive macrophages (i.e., tumor-associated macrophages), and clinical outcome.
In all cases, the log-rank test revealed that those with high marker scores and macrophage counts (except for marginal CD10+ CAFs) showed significantly worse disease-free survival (DFS). Grade 2/3 cases with high CAF scores (excluding the marginal FAP and CD10 scores) showed significantly worse DFS, whereas those with high intratumoral FAP/CD10 and marginal podoplanin scores showed significantly worse metastasis-free survival (MFS), and those with high intratumoral CD10 score showed significantly worse local recurrence-free survival (LFS). Multivariate analysis identified intratumoral CD10/podoplanin scores and marginal FAP/podoplanin scores as independent prognostic factors for DFS, intratumoral FAP/CD10 and marginal FAP/podoplanin/CD163-positive macrophage scores as independent prognostic factors for MFS, and the intratumoral podoplanin score as an independent prognostic factor for LFS. There was a weak-to-moderate correlation between each score and CD163-positive macrophage counts.
Patients with high CAF marker expression in the intratumoral and marginal areas have a poorer outcome.
Umakoshi M
,Kudo-Asabe Y
,Tsuchie H
,Li Z
,Koyama K
,Miyabe K
,Yoshida M
,Nagasawa H
,Nanjo H
,Okada K
,Maeda D
,Miyakoshi N
,Tanaka M
,Goto A
... -
《-》
-
Mechanistic Characterization of Cancer-associated Fibroblast Depletion via an Antibody-Drug Conjugate Targeting Fibroblast Activation Protein.
Cancer-associated fibroblasts (CAF) are a prominent cell type within the tumor microenvironment (TME) where they are known to promote cancer cell growth and survival, angiogenesis, drug resistance, and immunosuppression. The transmembrane prolyl protease fibroblast activation protein (FAP) is expressed on the surface of highly protumorigenic CAFs found in the stroma of nearly every cancer of epithelial origin. The widespread expression of FAP has made it an attractive therapeutic target based on the underlying hypothesis that eliminating protumorigenic CAFs will disrupt the cross-talk between components of TME resulting in cancer cell death and immune infiltration. This hypothesis, however, has never been directly proven. To eliminate FAP-expressing CAFs, we developed an antibody-drug conjugate using our anti-FAP antibody, huB12, coupled to a monomethyl auristatin E (huB12-MMAE) payload. After determining that huB12 was an effective targeting vector, we found that huB12-MMAE potently eliminated FAP-expressing cells as monocultures in vitro and significantly prolonged survival in vivo using a xenograft engineered to overexpress FAP. We investigated the effects of selectively eliminating CAFs using a layered, open microfluidic cell coculture platform, known as the Stacks. Analysis of mRNA and protein expression found that treatment with huB12-MMAE resulted in the increased secretion of the proinflammatory cytokines IL6 and IL8 by CAFs and an associated increase in expression of proinflammatory genes in cancer cells. We also detected increased secretion of CSF1, a cytokine involved in myeloid recruitment and differentiation. Our findings suggest that the mechanism of FAP-targeted therapies is through effects on the immune microenvironment and antitumor immune response.
The direct elimination of FAP-expressing CAFs disrupts the cross-talk with cancer cells leading to a proinflammatory response and alterations in the immune microenvironment and antitumor immune response.
Gallant JP
,Hintz HM
,Gunaratne GS
,Breneman MT
,Recchia EE
,West JL
,Ott KL
,Heninger E
,Jackson AE
,Luo NY
,Rosenkrans ZT
,Hernandez R
,Zhao SG
,Lang JM
,Meimetis L
,Kosoff D
,LeBeau AM
... -
《-》
-
Pan-cancer analysis shows that BCAP31 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types.
B-cell receptor-associated protein 31 (BCAP31) is a widely expressed transmembrane protein primarily located in the endoplasmic reticulum (ER), including the ER-mitochondria associated membranes. Emerging evidence suggests that BCAP31 may play a role in cancer development and progression, although its specific effects across different cancer types remain incompletely understood.
The raw data on BCAP31 expression in tumor and adjacent non-tumor (paracancerous) samples were obtained from the Broad Institute Cancer Cell Line Encyclopedia (CCLE) and UCSC databases. We also examined the association between BCAP31 expression and clinicopathological factors. Using the Cox proportional hazards model, we found that high BCAP31 levels were linked to poor prognosis. To further explore BCAP31's role, we analyzed the relationship between copy number variations (CNV) and BCAP31 mRNA expression using data from The Cancer Genome Atlas (TCGA). Additionally, the association between BCAP31 expression and signature pathway scores from the MsigDB database provided insights into the tumor biology and immunological characteristics of BCAP31.We assessed the relationship between tumor immune infiltration and BCAP31 expression using the TIMER2 and ImmuCellAI databases. The ESTIMATE computational method was employed to estimate the proportion of immune cells infiltrating the tumors, as well as the stromal and immune components, based on TCGA data. To investigate drug sensitivity in relation to BCAP31 expression, we utilized GDSC2 data, which included responses to 198 medications. We explored the relationship between BCAP31 gene expression and response to immunotherapy. Additionally, the study involved culturing KYSE-150 cells under standard conditions and using siRNA-mediated knockdown of BCAP31 to assess its function. Key experiments included Western blotting (WB) to confirm BCAP31 knockdown, MTT assays for cell proliferation, colony formation assays for growth potential, Transwell assays for migration and invasion, and wound healing assays for motility. Additionally, immunohistochemistry (IHC) was performed on tumor and adjacent normal tissue samples to evaluate BCAP31 expression levels.
BCAP31 was found to be significantly overexpressed in several prevalent malignancies and was associated with poor prognosis. Cox regression analysis across all cancer types revealed that higher BCAP31 levels were predominantly linked to worse overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI). In most malignancies, increased BCAP31 expression was positively correlated with higher CNV. Additionally, BCAP31 expression was strongly associated with the tumor microenvironment (TME), influencing the levels of infiltrating immune cells, immune-related genes, and immune-related pathways. Drug sensitivity analysis identified six medications that showed a significant positive correlation with BCAP31 expression. Furthermore, BCAP31 expression impacted the outcomes and prognosis of cancer patients undergoing immune therapy. The functional assays demonstrated that BCAP31 knockdown in KYSE-150 cells significantly inhibited cell migration, invasion, and proliferation while enhancing colony formation ability. WB and immunohistochemistry analyses confirmed elevated BCAP31 expression in tumor tissues compared to adjacent normal tissues in esophageal cancer, lung adenocarcinoma, and gastric adenocarcinoma.
BCAP31 has the potential to serve as a biomarker for cancer immunology, particularly in relation to immune cell infiltration, and as an indicator of poor prognosis. These findings provide a new perspective that could inform the development of more targeted cancer therapy strategies.
Sun Y
,Li Z
,Liu J
,Xiao Y
,Pan Y
,Lv B
,Wang X
,Lin Z
... -
《Frontiers in Immunology》