Elemene mitigates oxidative stress and neuronal apoptosis induced by cerebral ischemia-reperfusion injury through the regulation of glutathione metabolism.

来自 PUBMED

作者:

Wu PCheng LHLiu YLZhang JLDong XMChen LXu YXRen YYZhang HMLiu ZQZhou JLXie T

展开

摘要:

Chinese materia medica (CMM) has a long history and extensive experience in treating ischemic stroke. Wen Ezhu, the rhizome of Curcuma wenyujin Y.H. Chen et C. Ling, is renowned for promoting blood circulation, dispersing blood stasis, alleviating pain, and eliminating masses. Promoting blood circulation and removing blood stasis are essential principles in Traditional Chinese Medicine for treating stroke. Consequently, Wen Ezhu is frequently used in clinical practice as a key CMM for treating stroke. The Elemene active fraction (ELE), a sesquiterpene compound extracted from Wen Ezhu, primarily consists of β-Elemene. It also contains β-Caryophyllene, γ-Elemene, and δ-Elemene isomers. ELE has shown potential pharmacological effects in various diseases, including ischemic stroke. However, its precise mechanism of action in treating stroke remains to be confirmed. To explore the therapeutic potential of ELE in acute ischemic stroke and elucidate its underlying mechanisms. A rat model of middle cerebral artery occlusion reperfusion (MCAO/R) was used to evaluate ELE's effects. Therapeutic efficacy was assessed through mNSS scoring, magnetic resonance imaging (MRI), tetrazolium chloride (TTC) staining, Hematoxylin and eosin (H&E), and Nissl staining. Non-targeted metabolomics identified key pathways, confirmed using biochemical analysis, immunohistochemistry, and Western blotting. ROS levels and apoptosis-related proteins were also evaluated. Our findings show that ELE administration significantly reduced the cerebral infarct area and lowered modified neurological severity scores (mNSS) in animals, indicating a strong neuroprotective effect. Metabolomics results highlight the glutathione (GSH) metabolic pathway as a key mechanism through which ELE exerts its therapeutic effects. Specifically, ELE upregulates glutathione reductase (GR) protein expression and downregulates glutathione peroxidase (GPX) expression. The regulatory process of ELE decreases oxidized glutathione (GSSG) levels and increases GSH levels, effectively reducing oxidative stress damage (lower reactive oxygen species levels) during CI/RI. This results in the downregulation of the pro-apoptotic protein Bax and the upregulation of the pro-survival protein Bcl-2, thus reducing neuronal apoptosis. ELE protects neurons in MCAO/R rats through the GSH metabolism pathway, balancing GSH and GSSG levels to mitigate oxidative stress and enhance neuroprotection in cerebral ischemia/reperfusion injury.

收起

展开

DOI:

10.1016/j.jep.2024.119166

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读