Development of a predictive nomogram for early identification of pulmonary embolism in hospitalized patients: a retrospective cohort study.

来自 PUBMED

作者:

Cao ZYang LHan JLv XWang XZhang BYe XYe H

展开

摘要:

Hospitalized patients often present with complex clinical conditions, but there is a lack of effective tools to assess their risk of pulmonary embolism (PE). Therefore, our study aimed to develop a nomogram model for better predicting PE in hospitalized populations. Data from hospitalized patients (aged ≥ 15 years) who underwent computed tomography pulmonary angiography (CTPA) to confirm PE and non-PE were collected from December 2013 to April 2023. Univariate and multivariate stepwise logistic regression analyses were conducted to identify independent predictors of PE, followed by the construction of a predictive nomogram and internal validation. The efficiency and clinical utility of the nomogram model were assessed using receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and clinical impact curve (CIC). The study included 313 PE and 339 non-PE hospitalized patients. Male gender, dyspnea or shortness of breath, interstitial lung disease, lower limb deep vein thrombosis, elevated fibrin degradation product (FDP), pulmonary arterial hypertension, and tricuspid regurgitation were identified as independent risk factors. The AUC of the predictive nomogram model was 0.956 (95% CI: 0.939-0.974), demonstrating superior performance compared with the simplified Wells score of 0.698 (95% CI: 0.654-0.741) and the modified Geneva score of 0.758 (95% CI: 0.717-0.799). Our study demonstrated that challenges remain in the accuracy of the Wells score and revised Geneva score in assessing PE in hospitalized patients. Fortunately, the nomogram we developed has shown a favorable ability to discriminate PE cases, providing high reference value for clinical practice. However, given that this was a single-center study, we plan to expand efforts to collect data from additional centers to further validate our model.

收起

展开

DOI:

10.1186/s12890-024-03377-z

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

BMC Pulmonary Medicine

影响因子:3.317

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读