Identification of immune-related mitochondrial metabolic disorder genes in septic shock using bioinformatics and machine learning.

来自 PUBMED

作者:

Cui YHWu CRHuang LOXu DTang JG

展开

摘要:

Mitochondria are involved in septic shock and inflammatory response syndrome, which severely affects the life security of patients. It is necessary to recognize and explore the immune-mitochondrial genes in septic shock. The GSE57065 dataset was acquired from the Gene Expression Omnibus (GEO) database and filtered by limma and the weighted correlation network analysis (WGCNA) to identify mitochondrial-related differentially expressed genes (MitoDEGs) in septic shock. The function of MitoDEGs was analyzed using the Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), respectively. The Protein-Protein Interaction (PPI) network composed of MitoDEGs was established using Cytoscape. Support Vector Machine Recursive Feature Elimination (SVM-RFE), Random Forest (RF), and Least Absolute Shrinkage and Selection Operator (LASSO) were used to identify diagnostic MitoDEGs, which were validated using receiver operating characteristic (ROC) analysis and Quantitative Real-time Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Furthermore, the infiltration of immunocytes was analyzed using CIBERSORT, and the correlation between diagnostic MitoDEGs and immunocytes was explored using Spearman. A total of 44 MitoDEGs were filtered, and functional enrichment analysis showed they were associated with mitochondrial function, and the PPI network had 457 nodes and 547 edges. Four diagnostic genes, MitoDEGs, PGS1, C6orf136, THEM4, and EPHX2, were identified by three machine learning algorithms, and qRT-PCR results obtained similar expression levels as bioinformatics analysis. Furthermore, the diagnostic model constructed by the diagnostic genes had fine diagnostic efficacy. Immunocyte infiltration analysis showed that activated immunocytes were abundant and correlated with hub genes, with neutrophils accounting for the largest proportion in septic shock. In this study, we recognized four immune-mitochondrial key genes (PGS1, C6orf136, THEM4, and EPHX2) in septic shock and designed a novel gene diagnosis model that provided a new and meaningful way for the diagnosis of septic shock.

收起

展开

DOI:

10.1186/s41065-024-00350-y

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

HEREDITAS

影响因子:2.592

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读