Develop a Novel Signature to Predict the Survival and Affect the Immune Microenvironment of Osteosarcoma Patients: Anoikis-Related Genes.
Osteosarcoma (OS) represents a prevalent primary bone neoplasm predominantly affecting the pediatric and adolescent populations, presenting a considerable challenge to human health. The objective of this investigation is to develop a prognostic model centered on anoikis-related genes (ARGs), with the aim of accurately forecasting the survival outcomes of individuals diagnosed with OS and offering insights into modulating the immune microenvironment.
The study's training cohort comprised 86 OS patients sourced from The Cancer Genome Atlas database, while the validation cohort consisted of 53 OS patients extracted from the Gene Expression Omnibus database. Differential analysis utilized the GSE33382 dataset, encompassing three normal samples and 84 OS samples. Subsequently, the study executed gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses. Identification of differentially expressed ARGs associated with OS prognosis was carried out through univariate COX regression analysis, followed by LASSO regression analysis to mitigate overfitting risks and construct a robust prognostic model. Model accuracy was assessed via risk curves, survival curves, receiver operating characteristic curves, independent prognostic analysis, principal component analysis, and t-distributed stochastic neighbor embedding (t-SNE) analysis. Additionally, a nomogram model was devised, exhibiting promising potential in predicting OS patient prognosis. Further investigations incorporated gene set enrichment analysis to delineate active pathways in high- and low-risk groups. Furthermore, the impact of the risk prognostic model on the immune microenvironment of OS was evaluated through tumor microenvironment analysis, single-sample gene set enrichment analysis (ssGSEA), and immune infiltration cell correlation analysis. Drug sensitivity analysis was conducted to identify potentially effective drugs for OS treatment. Ultimately, the verification of the implicated ARGs in the model construction was conducted through the utilization of real-time quantitative polymerase chain reaction (RT-qPCR).
The ARGs risk prognostic model was developed, comprising seven high-risk ARGs (CBS, MYC, MMP3, CD36, SCD, COL13A1, and HSP90B1) and four low-risk ARGs (VASH1, TNFRSF1A, PIP5K1C, and CTNNBIP1). This prognostic model demonstrates a robust capability in predicting overall survival among patients. Analysis of immune correlations revealed that the high-risk group exhibited lower immune scores compared to the low-risk group within our prognostic model. Specifically, CD8+ T cells, neutrophils, and tumor-infiltrating lymphocytes were notably downregulated in the high-risk group, alongside significant downregulation of checkpoint and T cell coinhibition mechanisms. Additionally, three immune checkpoint-related genes (CD200R1, HAVCR2, and LAIR1) displayed significant differences between the high- and low-risk groups. The utilization of a nomogram model demonstrated significant efficacy in prognosticating the outcomes of OS patients. Furthermore, tumor metastasis emerged as an independent prognostic factor, suggesting a potential association between ARGs and OS metastasis. Notably, our study identified eight drugs-Bortezomib, Midostaurin, CHIR.99021, JNK.Inhibitor.VIII, Lenalidomide, Sunitinib, GDC0941, and GW.441756-as exhibiting sensitivity toward OS. The RT-qPCR findings indicate diminished expression levels of CBS, MYC, MMP3, and PIP5K1C within the context of OS. Conversely, elevated expression levels were observed for CD36, SCD, COL13A1, HSP90B1, VASH1, and CTNNBIP1 in OS.
The outcomes of this investigation present an opportunity to predict the survival outcomes among individuals diagnosed with OS. Furthermore, these findings hold promise for progressing research endeavors focused on prognostic evaluation and therapeutic interventions pertaining to this particular ailment.
Yang M
,Su Y
,Xu K
,Zheng H
,Cai Y
,Wen P
,Yang Z
,Liu L
,Xu P
... -
《-》
Pyroptosis-related long-noncoding RNA signature predicting survival and immunotherapy efficacy in patients with lung squamous cell carcinoma.
Pyroptosis-related long-noncoding RNAs (PRlncRNAs) play an important role in cancer progression. However, their role in lung squamous cell carcinoma (LUSC) is unclear. A risk model was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis based on RNA sequencing data from The Cancer Genome Atlas database. The LUSC cohort was divided into high- and low-risk groups based on the median risk score. For the prognostic value of the model, the Kaplan-Meier analysis, log-rank test, and Cox regression analysis were performed. A nomogram was constructed to predict the prognosis of patients, using a risk score and clinical parameters such as age, sex, clinical stage, and tumor node metastasis classification (TNM) stage. Afterwards, six common algorithms were employed to assess the invasion of immune cells. The Gene Set Enrichment Analysis (GSEA) was conducted to identify differences between patients at high and low risk. Furthermore, the pRRophetic package was employed to forecast the half-maximal inhibitory doses of prevalent chemotherapeutic drugs, while the tumor immune dysfunction and exclusion score was computed to anticipate the response to immunotherapy. The expression levels of the seven PRlncRNAs were examined in both LUSC and normal lung epithelial cell lines using RT-qPCR. Proliferation, migration, and invasion assays were also carried out to investigate the role of MIR193BHG in LUSC cells. Patients in the low-risk group showed prolonged survival in the total cohort or subgroup analysis. The Cox regression analysis showed that the risk model could act as an independent prognostic factor for patients with LUSC. The results of GSEA analysis revealed that the high-risk group showed enrichment of cytokine pathways, Janus tyrosine kinase/signal transducer and activator of the transcription signalling pathway, and Toll-like receptor pathway. Conversely, the low-risk group showed enrichment of several gene repair pathways. Furthermore, the risk score was positively correlated with immune cell infiltration. Moreover, patients in the high-risk category showed reduced responsiveness to conventional chemotherapeutic medications and immunotherapy. The majority of the long noncoding RNAs in the risk model were confirmed to be overexpressed in LUSC cell lines compared to normal lung epithelial cell lines by in vitro tests. Further studies have shown that downregulating the expression of MIR193BHG may inhibit the growth, movement, and infiltration capabilities of LUSC cells, whereas increasing the expression of MIR193BHG could enhance these malignant tendencies. This study found that PRlncRNAs were linked to the prognosis of LUSC patients. The risk model, evaluated across various clinical parameters and treatment modalities, shows potential as a future reference for clinical applications.
Zhan X
,Li J
,Ding Y
,Zhou F
,Zeng R
,Lei L
,Zhang Y
,Feng A
,Qu Y
,Yang Z
... -
《-》
Prognosis and immune landscape of bladder cancer can be predicted using a novel miRNA signature associated with cuproptosis.
Bladder cancer is characterized by a high recurrence rate and mortality, posing a significant challenge to clinical management. Recently, cuproptosis, a novel form of regulated cell death, has been identified as a potential target for therapeutic intervention in various diseases. The contribution of cuproptosis-related microRNAs (miRNAs) in bladder cancer pathogenesis, however, remains largely unexplored. Therefore, the current study aims to construct a miRNA signature related to cuproptosis for predicting the prognosis and facilitating personalized therapeutic strategies in bladder cancer patients.
In this study, we retrieved transcriptomic data and clinical information pertaining to bladder cancer from publicly available databases, including the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We identified a set of 19 cuproptosis-related genes through a comprehensive review of relevant literature. Using multivariate Cox regression and LASSO analysis, we constructed a cuproptosis-related miRNA prognostic signature. The Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were used to validate the accuracy of prediction. Additionally, we developed a nomogram incorporating clinical characteristics and the miRNA signature to further assess its prognostic value. We evaluated the tumor microenvironment (TME) of every patient using immune ESTIMATE, CIBERSORT, and ssGSEA algorithms. We also investigated the differences in tumor mutation burden (TMB) and drug sensitivity between two groups. Finally, we validated the prognostic value of this miRNA signature using the OncomiR dataset.
We developed a panel of eight cuproptosis-associated miRNAs to serve as a prognostic signature. The predictive validity of this signature was determined using Kaplan-Meier and ROC curves, and was found to be acceptable in both the TCGA training, test and total dataset. The prognostic value of this signature was confirmed by univariate and multivariate Cox regression analysis, indicating its applicability as a prognostic factor. The immune cell infiltration was significantly associated with an immunosuppressive phenotype of TME in the high-risk group of patients; meanwhile, patients in the high-risk group had a lower TMB resulted in shorter survival. Notably, higher estimate scores and IC50 value for chemotherapy drugs were observed in the high-risk group, indicating poor response to immune therapy and chemotherapy.
Zhang Z
,Liu F
,Yu Y
,Xie F
,Zhu T
... -
《PeerJ》