Unveiling the potential anticancer activity of new dihydropyrimidines through dual inhibition of EGFR and TrkA: Design, synthesis, and in silico study.

来自 PUBMED

作者:

Slly AMEwes WABayoumi WASelim KB

展开

摘要:

A series of designed scaffold of dihydropyrimidine was synthesized as dual tyrosine kinase targets inhibitors using a multicomponent Biginelli reaction which provided a high atom economy in a single pot reaction. Several 1,4-DHPM hybrids were obtained via alkylation with different chloroacetylamine derivatives. All the synthesized derivatives were screened for their antiproliferative efficacy towards various cancer cell lines (HCT-116, PC-3, and MCF-7) and normal cell line WI-38 using MTT assay. The results indicated that compounds 8h and 8i have the most significant inhibitory effect on all evaluated cancer cell lines, displaying IC50 of 3.94-15.78 µM. Also, they demonstrated favorable selectivity towards normal cell lines. Moreover, the most active hybrids 8h and 8i were evaluated for their EGFR and TrkA inhibitory activity. The findings indicated that compound 8h had superior inhibitory activity compared to compound 8i on the targeted kinases, effectively stopping the G1 phase of the MCF-7 cell cycle and encouraging apoptosis. Additionally, the molecular docking studies declared that the most active compounds exhibited a notable binding interaction with the binding site of the target proteins. Furthermore, their physicochemical properties, ADMET profiles, and bioavailability radar plots were predicted and analyzed.

收起

展开

DOI:

10.1016/j.bioorg.2024.107962

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读