Cryptotanshinone alleviates immunosuppression in endometriosis by targeting MDSCs through JAK2/STAT3 pathway.

来自 PUBMED

作者:

Xie LZhong YChen YWang YXian PLiu SXin XChen YGuan YLi K

展开

摘要:

Endometriosis (EMS), a well-recognized chronic inflammatory disorder, characterized by significant immune dysregulation, in which myeloid-derived suppressor cells (MDSCs) are essential for facilitating immunosuppression and driving to disease progression. Cryptotanshinone (CTS) is an active compound capable of modulating MDSC-mediated immunosuppression; however, its therapeutic effects and mechanisms in the treatment of EMS remain unclear. This study aims to investigate the therapeutic potential of CTS in modulating MDSCs through JAK2/STAT3 signaling pathway and to evaluate its effects on immune microenvironment and endometriotic lesion growth in EMS. Transcriptomic data (GSE141549) and single-cell RNA sequencing data (GSE213216) were analyzed to compare immune cell populations in control endometrium (CE), eutopic endometrium (EuE) and ectopic endometrium (EcE) of patients with EMS. Network pharmacology analysis, surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA) were utilized to explore the molecular mechanism of CTS's effects on MDSCs. A C57BL/6J EMS mice model was established to evaluate CTS's influence on MDSC-mediated immune response in vivo. Flow cytometry and immunofluorescence were used to analyze the immune cell populations, particularly MDSCs and CD8+ T cells. Ex vivo bone marrow (BM)-derived MDSCs were prepared to investigate the modulatory activities of CTS on the frequency and function of MDSCs. The impacts of CTS on JAK2/STAT3 pathway were further examined by western blot. Bioinformatic analysis revealed that, among the three progression stages (CE, EuE, and EcE), the EcE stage exhibited a relatively elevated level of MDSCs and a reduced level of CD8+ T cells. Network pharmacological analysis, along with SPR and CETSA identified that CTS potentially modulates MDSCs in EMS by targeting the JAK2/STAT3 pathway. In vivo studies demonstrated that a relatively high dose of CTS treatment (60mg/kg) effectively inhibited lesion growth, reduced the population of MDSCs, and enhanced CD8+ T cell infiltration. Ex vivo experiments showed that CTS decreased the BM-derived MDSC frequency and rescued the suppressive ability of MDSC upon CD8+ T cells in a dose-dependent manner. Further mechanism analysis confirmed that CTS modulates the expression of immunosuppressive genes and proteins associated with MDSCs through JAK2/STAT3 pathway. This study is the first to demonstrate that CTS is a promising natural compound for EMS treatment by inhibiting MDSC accumulation and modulating MDSC-mediated immune responses. Its therapeutic efficacy is linked to the modulation of the JAK2/STAT3 signaling pathway.

收起

展开

DOI:

10.1016/j.phymed.2024.156227

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读