HNRNPH1 stabilizes FLOT2 mRNA in a non-canonical m6A-dependent manner to promote malignant progression in nasopharyngeal carcinoma.
The mechanism underlying the upregulation of FLOT2 in tumors, especially its regulatory mechanism at the RNA level, remains unclear. The purpose of this study is to investigate the regulatory mechanism of FLOT2 upregulation in tumors, particularly at the RNA level, and its role in nasopharyngeal carcinoma (NPC) progression.
We identified the role of HNRNPH1 in maintaining FLOT2 mRNA stability and its dependency on the m6A modification. We explored the interaction between HNRNPH1 and METTL14, a key enzyme in m6A modification, and its impact on FLOT2 mRNA stability. We also assessed the expression levels of HNRNPH1 and METTL14 in NPC and their correlation with patient malignancy and prognosis. Experimental approaches included in vitro and in vivo assays to study the effects of HNRNPH1 knockdown on NPC cell proliferation and invasion.
HNRNPH1 is highly expressed in NPC and stabilizes FLOT2 mRNA through an m6A-dependent mechanism. HNRNPH1 interacts with METTL14 to prevent its degradation by STUB1 E3 ligases, leading to increased m6A modification of FLOT2 by METTL14. Additionally, IGF2BP3 was shown to recognize the m6A modification on FLOT2 mRNA, further stabilizing it. High expression of HNRNPH1 and METTL14 were observed in NPC and were positively associated with increased malignancy and poorer patient outcomes. HNRNPH1 knockdown significantly reduced the proliferation and invasive capabilities of NPC cells. Restoration of METTL14 in HNRNPH1-depleted cells could rescue FLOT2 expression and the malignant phenotype, but this effect was negated by the knockdown of FLOT2.
Our study elucidates a novel mechanism where HNRNPH1 and METTL14 work together to maintain the stability of FLOT2 mRNA, thereby promoting NPC progression. Targeting this pathway presents a promising therapeutic strategy for the treatment of NPC.
Li Q
,Liu J
,Zeng C
,Qin D
,Zhang Z
,Lv Q
,Li J
,Huang W
... -
《-》
m6A methylation profiling as a prognostic marker in nasopharyngeal carcinoma: insights from MeRIP-Seq and RNA-Seq.
Nasopharyngeal carcinoma (NPC) is a type of malignant tumors commonly found in Southeast Asia and China, with insidious onset and clinical symptoms. N6-methyladenosine (m6A) modification significantly contributes to tumorigenesis and progression by altering RNA secondary structure and influencing RNA-protein binding at the transcriptome level. However, the mechanism and role of abnormal m6A modification in nasopharyngeal carcinoma remain unclear.
Nasopharyngeal Carcinoma tissues from 3 patients and non-cancerous nasopharyngeal tissues from 3 individuals, all from Fujian Cancer Hospital, were sequenced for m6A methylation. These were combined with transcriptome sequencing data from 192 nasopharyngeal cancer tissues. Genes linked to prognosis were discovered using differential analysis and univariate Cox regression. Subsequently, a prognostic model associated with m6A was developed through the application of LASSO regression analysis. The model's accuracy was verified using both internal transcriptome databases and external databases. An extensive evaluation of the tumor's immune microenvironment and signaling pathways was performed, analyzing both transcriptomic and single-cell data.
The m6A methylation sequencing analysis revealed 194 genes with varying expression levels, many of which are predominantly associated with immune pathways. By integrating transcriptome sequencing data, 19 m6A-modified genes were found to be upregulated in tumor tissues, leading to the development of a three-gene (EME1, WNT4, SHISA2) risk prognosis model. The group with lower risk exhibited notable enrichment in pathways related to immunity, displaying traits like enhanced survival rates, stronger immune profiles, and increased responsiveness to immunotherapy when compared to the higher-risk group. Single-cell analysis revealed that malignant cells exhibited the highest risk score levels compared to immune cells, with a high-risk score indicating worse biological behavior. The three hub genes demonstrated significant correlation with m6A modification regulators, and MeRIP-RT-PCR confirmed the occurrence of m6A methylation in these genes within nasopharyngeal carcinoma cells.
A prognostic model for nasopharyngeal carcinoma risk based on m6A modification genes was developed, and its prognostic value was confirmed through self-assessment data. The study highlighted the crucial impact of m6A modification on the immune landscape of nasopharyngeal cancer.
Chen X
,Xu W
,Pan J
,Yang H
,Li Y
,Chen X
,Sun Y
,Liu Q
,Qiu S
... -
《Frontiers in Immunology》
METTL14 attenuates cancer stemness by suppressing ATF5/WDR74/β-catenin axis in gastric cancer.
Stemness is a key factor contributing to treatment failure in gastric cancer (GC). Methyltransferase-like 14 (METTL14) has been linked to various cancers, though its specific role in regulating stemness in GC remains undefined. In this study, we assessed METTL14 expression levels in GC tissues using public datasets and clinical specimens and investigated its impact on cell proliferation, metastasis, and stemness both in vitro and in vivo. Through m6A RNA immunoprecipitation (MeRIP) and luciferase reporter assays, we identified downstream targets of METTL14. Rescue assays were performed to examine whether METTL14 overexpression could reverse stemness in GC. We also explored the underlying mechanisms using chromatin immunoprecipitation (ChIP) and western blot analysis, focusing on the role of ATF5 and the upstream regulation of METTL14. Our findings show that lower METTL14 expression is associated with poorer overall survival in GC patients. Functionally, METTL14 knockdown enhanced stemness traits in GC cells. Mechanistically, METTL14 facilitated m6A modification, promoting the degradation of ATF5 mRNA. Overexpression of ATF5 reversed the stemness inhibition caused by METTL14 overexpression by increasing WDR74 transcription and enhancing β-catenin nuclear translocation. Furthermore, histone H3 lactylation at Lys18 was found to upregulate METTL14 expression. In conclusion, METTL14 knockdown promotes stemness in GC by mediating m6A modification of ATF5 mRNA, which activates the WDR74/β-catenin axis, making METTL14 a potential therapeutic target for gastric cancer treatment.
Zhang P
,Xiang H
,Peng Q
,Ma L
,Weng C
,Liu G
,Lu L
... -
《-》
Multiomics analysis reveals the involvement of NET1 in tumour immune regulation and malignant progression.
Neuroepithelial cell transforming gene 1 (NET1) is a member of the Ras homologue family member A (RhoA) subfamily of guanine nucleotide exchange factors and a key protein involved in the activation of Rho guanosine triphosphatases, which act as regulators of cell proliferation, cytoskeletal organization, and cell movement and are crucial for cancer spread. Research has shown that NET1 can regulate the malignant biological functions of tumour cells, such as growth, invasion, and metastasis, and it is closely related to the progression of pancreatic cancer, gastric cancer, and liver cancer. However, the comprehensive role and mechanistic function of NET1 in other types of cancer remain largely unexplored. A deeper understanding of the role of NET1 may provide new insights into the molecular mechanisms of cancer progression and metastasis. This study aims to fill this knowledge gap and provide a more comprehensive understanding of the role of NET1 in cancer biology. The Cancer Genome Atlas and Genotype-Tissue Expression databases were utilized to analyse the differential expression of NET1 in normal and cancer tissues. The prognostic value of NET1 in cancer was evaluated through log-rank tests and Cox regression models. Further analysis was conducted to assess the relationships between NET1 expression and clinical features, as well as its diagnostic value. We investigated potential factors contributing to genetic alterations in NET1 to elucidate the role of NET1 in cancer progression. We also explored the relationships between NET1 and genes associated with epigenetic modifications, oncogenes, and tumour characteristics, such as RNA stemness scores (RNAss), DNA stemness scores (DNAss), the tumour mutation burden (TMB), and microsatellite instability (MSI). Additionally, we analysed the associations between NET1 expression and immune cell infiltration, immunoregulatory genes, and sensitivity to therapeutic drugs. We conducted gene set enrichment analysis to further investigate the signalling pathways that might be affected by changes in NET1. The prognostic value of NET1 in triple-negative breast cancer (TNBC) was further validated using real-world and Gene Expression Omnibus (GEO) data. Finally, through both in vivo and in vitro experiments, we confirmed that the overexpression of NET1 contributed to the malignant progression of TNBC cells, and we explored the potential mechanism by which NET1 regulates malignant biological behaviour through cellular experiments. Our study revealed a higher expression level of NET1 in 18 types of tumour tissues than in their corresponding normal tissues. Specifically, we observed high expression of NET1 in LIHC, LUSC, PAAD, and BRCA tumour tissues, which was associated with a poor prognosis. In terms of gene alterations, "amplification", "mutation", and "deep deletion" were identified as the main types of changes occurring in NET1. Among these, "amplification" was predominantly observed in LIHC, LUSC, PAAD, and BRCA. Furthermore, a significant positive correlation was found between copy number variations and the NET1 expression level in various tumours, including LIHC, LUSC, PAAD, and BRCA. We also discovered that NET1 expression was positively correlated with the expression of genes related to epigenetic modification in almost all types of cancer and was related to the expression levels of numerous oncogenes. In certain tumours, a significant positive correlation was noted between the expression of NET1 and TMB, MSI, DNAss, and RNAss. Intriguingly, in most tumours, NET1 expression was strongly negatively correlated with the levels of infiltrating natural killer cells and M1 macrophages. Moreover, NET1 expression was significantly positively correlated with the expression of immune genes in nearly all types of cancer. An analysis of single-cell data revealed that NET1 was expressed primarily in malignant tumour cells in most tumours, with little to no expression in immune cells. Additionally, the expression level of NET1 was associated with sensitivity to various therapeutic drugs. Data from GEO and real-world studies indicated high expression of NET1 in TNBC tissues, which was correlated with a poor prognosis. Cellular experiments indicated that NET1 could regulate the proliferation, invasion, cell cycle, and apoptosis of TNBC cells. Furthermore, NET1 may mediate the malignant proliferation of tumour cells through the AKT signalling pathway. NET1 can serve as a potential prognostic marker for LIHC, LUSC, PAAD, and BRCA tumours. Real-world data further suggest that NET1 can also serve as a prognostic indicator for TNBC. High expression of NET1 may contribute to the malignant proliferation of TNBC cells, potentially through the AKT signalling pathway. Moreover, NET1 may contribute to the formation of an immunosuppressive microenvironment that can promote tumour progression. Therefore, targeting NET1 may represents a promising approach for inhibiting tumour progression.
Pang J
,Huang X
,Gao Y
,Guan X
,Xiong L
,Li L
,Yin N
,Dai M
,Han T
,Yi W
... -
《Scientific Reports》
EZH2 promotes B-cell autoimmunity in primary Sjogren's syndrome via METTL3-mediated m6A modification.
Enhancer of zeste homologue 2 (EZH2) plays an important role in promoting B-cell activation and differentiation. This study aimed to elucidate the role of EZH2 in the B-cell autoimmune response in primary Sjögren's syndrome (pSS) and to explore the therapeutic potential of inhibiting EZH2 in pSS.
Single-cell RNA sequencing analysis of B cells in peripheral blood from pSS patients was conducted to identify abnormal expression of EZH2 and METTL3 in B-cell subsets. The levels of EZH2 were further validated across multiple B-cell subsets and the salivary glands (SGs) of pSS patients, as well as three different mouse models of Sjögren's syndrome (SS). Correlation analyses were performed to explore the relationship between the expression of EZH2 and clinical features of pSS patients. Following EZH2 inhibition, SS-like signs and antibody production were assessed in an experimental Sjögren syndrome (ESS) mouse model. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data post-EZH2 inhibition were bioinformatically analyzed to identify the EZH2 targets in pSS. ChIP-qPCR was performed to validate the binding of H3K27me3 to the CDKN1A promoter. Flow cytometric apoptosis analysis and Carboxy Fluorescein Succinimidyl Ester (CFSE) assay were used to assess the impact of an EZH2 inhibitor on B-cell apoptosis and proliferation. Additionally, METTL3 expression and its correlation with disease activity were analyzed in pSS patients. EZH2 expression was examined after METTL3 knockdown. METTL3-RNA immunoprecipitation (RIP) and actinomycin D assays were conducted to confirm the direct binding of METTL3 to EZH2 mRNA and its impact on mRNA stability. M6A-RIP-qPCR was performed to validate the presence of m6A modifications on EZH2 mRNA.
EZH2 was found upregulated in multiple B-cell subsets from the peripheral blood and SGs of pSS patients, as well as in three different animal models of SS. The expression of EZH2 in B cells was positively correlated with the ESSDAI score, which is a measure of disease activity. With treatment of EZH2 inhibitor, SS-like signs alleviated and autoantibody production reduced in ESS mice. Similarly, in pSS patients, METTL3 expression was increased in the SGs and peripheral blood CD19+ B cells, also showing a positively correlated with the ESSDAI score. With knockdown of METTL3, the expression of EZH2 reduced. Mechanistically, EZH2 inhibited B-cell apoptosis and promoted B-cell proliferation by catalyzing H3K27me3 modification at the CDKN1A locus. Furthermore, METTL3 bound to EZH2 mRNA and increased m6A modification on EZH2 mRNA, enhancing its stability and promoting EZH2 expression.
The upregulation of EZH2 mediated by METTL3 is implicated in the B-cell autoimmune response in pSS. Inhibition of EZH2 presents a promising therapeutic strategy for pSS treatment.
Yang Y
,Li M
,Ding L
,Zhang Y
,Liu K
,Liu M
,Li Y
,Luo H
,Zuo X
,Zhang H
,Guo M
... -
《-》