Burnout crisis in Chinese radiology: will artificial intelligence help?

来自 PUBMED

作者:

Fang XMa CLiu XDeng XLiao JZhang T

展开

摘要:

To assess the correlation between the use of artificial intelligence (AI) software and burnout in the radiology departments of hospitals in China. This study employed a cross-sectional research design. From February to July 2024, an online survey was conducted among radiologists and technicians at 68 public hospitals in China. The survey utilized general information questionnaires, the Maslach Burnout Inventory-Human Services Survey (MBI-HSS) scale, and a custom-designed AI usage questionnaire. This study analyzed the correlation between AI software usage and occupational burnout, and general information was included as a control variable in a multiple linear regression analysis. The analysis of survey data from 522 radiology staff revealed that 389 (74.5%) had used AI and that 252 (48.3%) had used it for more than 12 months. Only 133 (25.5%) had not yet adopted AI. Among the respondents, radiologists had a higher AI usage rate (82.0%) than technicians (only 59.9%). Furthermore, 344 (65.9%) of the respondents exhibited signs of burnout. The duration of AI software usage was significantly negatively correlated with overall burnout, yielding a Pearson correlation coefficient of -0.112 (p < 0.05). Multiple stepwise regression analysis revealed that salary satisfaction, night shifts, duration of AI usage, weekly working hours, having children, and professional rank were the main factors influencing occupational burnout (all p < 0.05). AI has the potential to significantly help mitigate occupational burnout among radiology staff. This study reveals the key role that AI plays in assisting radiology staff in their work. Questions Although we are aware that radiology staff burnout is intensifying, there is no quantitative research assessing whether artificial intelligence software can mitigate this occupational burnout. Findings The longer staff use deep learning-based artificial intelligence imaging software, the less severe their occupational burnout tends to be. This result is particularly evident among radiologists. Clinical relevance In China, radiologists and technicians experience high burnout rates. Even if there is an artificial intelligence usage controversy, encouraging the use of artificial intelligence software in radiology helps prevent and alleviate this occupational burnout.

收起

展开

DOI:

10.1007/s00330-024-11206-4

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(32)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读