Exploring the Therapeutic Potential of Noncoding RNAs in Alzheimer's Disease.
Despite significant research efforts, Alzheimer's disease (AD), the primary cause of dementia in older adults worldwide, remains a neurological challenge for which there are currently no effective therapies. There are substantial financial, medical, and personal costs associated with this condition.Important pathological features of AD include hyperphosphorylated microtubule-associated protein Tau, the formation of amyloid β (Aβ) peptides from amyloid precursor protein (APP), and continuous inflammation that ultimately results in neuronal death. Important histological markers of AD, amyloid plaques, and neurofibrillary tangles are created when Aβ and hyperphosphorylated Tau build-up. Nevertheless, a thorough knowledge of the molecular players in AD pathophysiology is still elusive. Recent studies have shown how noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in a variety of diseases, including AD. There is increasing evidence to support the involvement of these ncRNAs in the genesis and progression of AD, making them promising as biomarkers and therapeutic targets. As a result, therapeutic approaches that target regulatory ncRNAs are becoming more popular as potential means of preventing the progression of AD. This review explores the posttranscriptional relationships between ncRNAs and the main AD pathways, highlighting the potential of ncRNAs to advance AD treatment. In AD, ncRNAs, especially miRNAs, change expression and present potential targets for therapy. MiR-346 raises Aβ through APP messenger Ribonucleic Acid (mRNA), whereas miR-107 may decrease Aβ by targeting beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). They are promising early AD biomarkers due to their stability in cerebrospinal fluid (CSF) and blood. Furthermore, additional research is necessary to determine the role that RNA fragments present in AD-related protein deposits play in AD pathogenesis.
Tripathi S
,Sharma Y
,Kumar D
《-》
Exosomes and non-coding RNAs: bridging the gap in Alzheimer's pathogenesis and therapeutics.
Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD. Furthermore, lncRNAs and circRNAs can act as competitive endogenous RNAs to inhibit miRNAs, and their interactions can form a complex regulatory network. Exosomes, which are extracellular vesicles (EVs), are believed to be able to transfer ncRNAs between cells, thus playing a regulatory role in the brain by crossing the blood-brain barrier (BBB). Exosomes are part of the intercellular carrier system; therefore, utilizing exosomes to deliver drugs to recipient cells might not activate the immune system, making it a potential strategy to treat central nervous system diseases. In this review, we review that AD is a multifactorial neurological disease and that ncRNAs can regulate its multiple pathogenic mechanisms to improve our understanding of the etiology of AD and to simultaneously regulate multiple pathogenic mechanisms of AD through the binding of ncRNAs to exosomes to improve the treatment of AD.
Chunhui G
,Yanqiu Y
,Jibing C
,Ning L
,Fujun L
... -
《-》
Qualitative evidence synthesis informing our understanding of people's perceptions and experiences of targeted digital communication.
Health communication is an area where changing technologies, particularly digital technologies, have a growing role to play in delivering and exchanging health information between individuals, communities, health systems, and governments.[1] Such innovation has the potential to strengthen health systems and services, with substantial investments in digital health already taking place, particularly in low‐ and middle‐income countries. Communication using mobile phones is an important way of contacting individual people and the public more generally to deliver and exchange health information. Such technologies are used increasingly in this capacity, but poor planning and short‐term projects may be limiting their potential for health improvement. The assumption that mobile devices will solve problems that other forms of communication have not is also prevalent. In this context, understanding people's views and experiences may lead to firmer knowledge on which to build better programs. A qualitative evidence synthesis by Heather Ames and colleagues on clients' perceptions and experiences of targeted digital communication focuses on a particular type of messaging – targeted messages from health services delivered to particular group(s) via mobile devices, in this case looking at communicating with pregnant women and parents of young children, and with adults and teenagers about sexual health and family planning.[2] These areas of reproductive, maternal, newborn, child, and adolescent health (RMNCAH) are where important gains have been made worldwide, but there remains room for improvement. Ames and colleagues sought to examine and understand people's perceptions and experiences of using digital targeted client communication. This might include communication in different formats and with a range of purposes related to RMNCAH – for example, receiving text message reminders to take medicines (e.g. HIV medicines) or go to appointments (such as childhood vaccination appointments), or phone calls offering information or education (such as about breastfeeding or childhood illnesses), support (e.g. providing encouragement to change behaviours) or advice (such as advising about local healthcare services). These communication strategies have the potential to improve health outcomes by communicating with people or by supporting behaviour change. However, changing people's health behaviours to a significant and meaningful degree is notoriously challenging and seldom very effective across the board. There are a multitude of systematic reviews of interventions aiming to change behaviours of both patients and providers, with the overall objective of improving health outcomes – many of which show little or no average effects across groups of people.[3] This evidence synthesis is therefore important as it may help to understand why communicating with people around their health might (or might not) change behaviours and improve consequent health outcomes. By examining the experiences and perspectives of those receiving the interventions, this qualitative evidence synthesis allows us to better understand the interventions' acceptability and usefulness, barriers to their uptake, and factors to be considered when planning implementation. The synthesis looked at 35 studies from countries around the world, focussing on communication related to RMNCAH. Of the 35 studies, 16 were from high‐income countries, mainly the United States, and 19 were from low‐ or middle‐income countries, mainly African countries. Many of the studies presented hypothetical scenarios. The findings from the synthesis are mixed and give us a more nuanced picture of the role of targeted digital communication. People receiving targeted digital communications from health services often liked and valued these contacts, feeling supported and connected by them. However, some also reported problems with the use of these technologies, which may represent barriers to their use. These included practical or technical barriers like poor network or Internet access, as well as cost, language, technical literacy, reading or issues around confidentiality, especially where personal health conditions were involved. Access to mobile phones may also be a barrier, particularly for women and adolescents who may have to share or borrow a phone or who have access controlled by others. In such situations it may be difficult to receive communications or to maintain privacy of content. The synthesis also shows that people's experiences of these interventions are influenced by factors such as the timing of messages, their frequency and content, and their trust in the sender. Identifying key features of such communications by the people who use them might therefore help to inform future choices about how and when such messaging is used. The authors used their knowledge from 25 separate findings to list ten implications for practice. This section of the review is hugely valuable, making a practical contribution to assist governments and public health agencies wishing to develop or improve their delivery of digital health. The implications serve as a list of points to consider, including issues of access (seven different aspects are considered), privacy and confidentiality, reliability, credibility and trust, and responsiveness to the needs and preferences of users. In this way, qualitative evidence is building a picture of how to better communicate with people about health. For example, an earlier 2017 Cochrane qualitative evidence synthesis by Ames, Glenton and Lewin on parents' and informal caregivers' views and experiences of communication about routine childhood vaccination provides ample evidence that may help program managers to deliver or plan communication interventions in ways that are responsive to and acceptable to parents.[4] The qualitative synthesis method, therefore, puts a spotlight on how people's experiences of health and health care in the context of their lives may lead to the design of better interventions, as well as to experimental studies which take more account of the diversity that exists in people's attitudes and decision‐making experiences.[5] In the case of this qualitative evidence synthesis by Ames and colleagues, the method pulled together a substantial body of research (35 data‐rich studies were sampled from 48 studies identified, with the high‐to‐moderate confidence in the evidence for 13 of the synthesized findings). The evidence from this review can inform the development of interventions, and the design of trials and their implementation. While waiting for such new trials or trial evidence on effects to emerge, decision‐makers can build their programs on the highly informative base developed by this review. This qualitative evidence synthesis, alongside other reviews, has informed development by the World Health Organization of its first guideline for using digital technologies for health systems strengthening,[1, 6] part of a comprehensive program of work to better understand and support implementation of such new technologies.
Ryan R
,Hill S
《Cochrane Database of Systematic Reviews》
Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics.
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Sandhanam K
,Tamilanban T
《-》