Examining the Role of Large Language Models in Orthopedics: Systematic Review.

来自 PUBMED

作者:

Zhang CLiu SZhou XZhou STian YWang SXu NLi W

展开

摘要:

Large language models (LLMs) can understand natural language and generate corresponding text, images, and even videos based on prompts, which holds great potential in medical scenarios. Orthopedics is a significant branch of medicine, and orthopedic diseases contribute to a significant socioeconomic burden, which could be alleviated by the application of LLMs. Several pioneers in orthopedics have conducted research on LLMs across various subspecialties to explore their performance in addressing different issues. However, there are currently few reviews and summaries of these studies, and a systematic summary of existing research is absent. The objective of this review was to comprehensively summarize research findings on the application of LLMs in the field of orthopedics and explore the potential opportunities and challenges. PubMed, Embase, and Cochrane Library databases were searched from January 1, 2014, to February 22, 2024, with the language limited to English. The terms, which included variants of "large language model," "generative artificial intelligence," "ChatGPT," and "orthopaedics," were divided into 2 categories: large language model and orthopedics. After completing the search, the study selection process was conducted according to the inclusion and exclusion criteria. The quality of the included studies was assessed using the revised Cochrane risk-of-bias tool for randomized trials and CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) guidance. Data extraction and synthesis were conducted after the quality assessment. A total of 68 studies were selected. The application of LLMs in orthopedics involved the fields of clinical practice, education, research, and management. Of these 68 studies, 47 (69%) focused on clinical practice, 12 (18%) addressed orthopedic education, 8 (12%) were related to scientific research, and 1 (1%) pertained to the field of management. Of the 68 studies, only 8 (12%) recruited patients, and only 1 (1%) was a high-quality randomized controlled trial. ChatGPT was the most commonly mentioned LLM tool. There was considerable heterogeneity in the definition, measurement, and evaluation of the LLMs' performance across the different studies. For diagnostic tasks alone, the accuracy ranged from 55% to 93%. When performing disease classification tasks, ChatGPT with GPT-4's accuracy ranged from 2% to 100%. With regard to answering questions in orthopedic examinations, the scores ranged from 45% to 73.6% due to differences in models and test selections. LLMs cannot replace orthopedic professionals in the short term. However, using LLMs as copilots could be a potential approach to effectively enhance work efficiency at present. More high-quality clinical trials are needed in the future, aiming to identify optimal applications of LLMs and advance orthopedics toward higher efficiency and precision.

收起

展开

DOI:

10.2196/59607

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

JOURNAL OF MEDICAL INTERNET RESEARCH

影响因子:7.069

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读