-
Hydrochemical characteristics, control factors and health risk assessment of groundwater in typical arid region Hotan Area, Chinese Xinjiang.
The Hotan region of Xinjiang is an arid region in northwest China, where water resources are scarce, and groundwater is the main water supply. In this study, a self-organizing map (SOM), positive matrix factorization (PMF), hydrochemical diagrams, and health risk assessment model were used to analyze the sources and controlling factors of groundwater chemistry, and evaluate health risks of nitrate and fluoride. The results showed that the evaporation process and water-rock interaction were the main factors influencing groundwater chemistry in the region. Based on the SOM, 239 groundwater samples were divided into six clusters. The main hydrochemical types were Cl-Na, HCO3-Na, and SO4-Ca. Natural factors such as evaporation, water-rock interaction and cation exchange play important roles in Cluster 1-2 and 4-6, while Cluster 3 is mainly polluted by nitrate. Fluoride pollution, primarily caused by geological processes, and nitrate pollution, caused by human activities, cannot be ignored. Attention should be paid to the high non-carcinogenic risk of fluoride and nitrate exposure through drinking water, especially for children. These results provide a theoretical basis for the rational development and utilization of local water resources and ecological environmental protection. The study suggested that the combined method of the SOM and PMF provides a reliable approach for interpreting nonlinear and high-dimensional hydrochemical data.
Fan W
,Zhou J
,Zheng J
,Guo Y
,Hu L
,Shan R
... -
《-》
-
Deciphering pollution sources and mechanisms controlling groundwater chemistry in a typical dense agricultural plain on Yungui Plateau.
Groundwater is a critical resource for economic growth and livelihoods in the dense agricultural plains of plateaus. However, contaminations from various sources pose significant threats to groundwater quality. Understanding the sources of groundwater contamination and the mechanisms of hydrochemical control is essential for the sustainable development of agriculturally intensive plains. This research utilizes 23 datasets of groundwater chemical measurements to apply hierarchical clustering analysis, positive matrix factorization, and hydrochemical analysis techniques. Through these methods, the study identifies the sources of groundwater contamination and deciphers the hydrochemical control mechanisms within a representative intensive agricultural plain region of Yungui Plateau. The finds indicate that groundwater in the plain primarily derives from the rainfall occurred in the surrounding mountains. During the long underground flow process, groundwater undergoes water-rock interactions and ion exchanges with various lithological strata, resulting in the formation of distinct hydrochemical types. As it traverses regions influenced by human activities, groundwater encounters varying levels and types of contamination. Consequently, there is a notable variation in groundwater quality across different areas of the plain. Groundwater is dominated by the hydrochemical faces of HCO3-Ca type in the southern part of the plain. Groundwater in the piedmont region of this part exhibits the highest quality, acting as the baseline for the overall groundwater quality of the plain. Groundwater in agricultural areas of this part is severely polluted by nitrate-rich agricultural wastewater. In the central urban area, under the control of municipal wastewater discharge and denitrification, groundwater is to some extent polluted by NH4 +. In the northern sector of the plain, groundwater chemistry exhibits greater diversity due to variations in geological strata and exposure to a range of pollution sources. The majority of the regions are contaminated with SO4 2- and Cl- and present a predominance of Cl-Na type for groundwater hydrochemical facies. Groundwater at the northernmost end is polluted by NO2 -, NH4 +, and P. In addition, there is also a small amount of groundwater near the lake that is heavily polluted by fertilizers. This study provides valuable insights for the development of sound groundwater management strategies, applicable not only to the current agricultural plain but also to analogous regions worldwide. PRACTITIONER POINTS: This study probed the impact of agricultural pollution on the groundwater hydrochemistry in a cultivated plain. The research pinpointed the origins and contributions of groundwater chemicals in the cultivated agricultural plain. A conceptual model was established to illustrate groundwater chemistry formation in an intensive agricultural irrigation plain on Yungui Plateau.
Wang J
,Xiao Y
,Wang L
,Zhang Y
,Feng M
,Zhu W
,Yang W
,Shi W
,Yang H
,Han J
,Hu W
,Wang N
... -
《-》
-
Optimized groundwater quality evaluation using unsupervised machine learning, game theory and Monte-Carlo simulation.
Assessing groundwater quality is essential for achieving sustainable development goals worldwide. However, it is challenging to conduct hydrochemical analysis and water quality evaluation by traditional methods. To fill this gap, this study analyzed the hydrochemical processes, drinking and irrigation water quality, and associated health risks of 93 groundwater samples from the Sichuan Basin in SW China using advanced unsupervised machine learning, the Combined-Weights Water Quality index, and Monte-Carlo simulations. Groundwater samples were categorized into three types using the self-organizing map with the K-means method: Cluster-1 was Ca-HCO3 type, Cluster-2 was dominated by Ca-HCO3, Na-HCO3, and mixed Na-Ca-HCO3 types, Cluster-3 was Ca-Cl and Ca-Mg-Cl types. Ion ratio diagrams revealed that carbonate dissolution and silicate weathering primarily influenced the hydrochemical characteristics. Cluster-1 samples exhibited high NO3- contents from intensive agricultural activities. Cluster-2 samples with high Na+ contents were characterized by positive cation exchange, while Cluster-3 samples with elevated Ca2+ and Mg2+ contents were influenced by reverse cation exchange. Combined-Weights Water Quality Index indicated that 62.37% of total samples were suitable for drinking, predominantly located in the central part of the study area. Irrigation Water Quality Index revealed that 33.34% of total samples were suitable for irrigation, mainly in the northeastern region. NO3- concentration and electrical conductivity (EC) value were the main indicators with the highest sensitivity for drinking and irrigation suitability, respectively. Probabilistic health risk assessments suggested that a significant portion of the groundwater samples posed a health risk greater than 1 to children (63%) and adults (52%) by Monte-Carlo simulation. The high-risk areas (hazard index >4), primarily in the eastern region, are closely associated with nitrate distribution. Sensitivity analysis demonstrated that NO3- concentration is the primary indicator accounting for health risks. Reducing the application of nitrogen-based fertilizers on cultivated land is the most effective approach to improve drinking quality and mitigate the associated health risks to the population. This study's findings aim to produce a novel groundwater quality evaluation for promoting the sustainable management and utilization of groundwater resources.
Yan Y
,Zhang Y
,Yang S
,Wei D
,Zhang J
,Li Q
,Yao R
,Wu X
,Wang Y
... -
《-》
-
Geospatial mapping and entropy-based analysis for groundwater evaluation with estimation of potential health risks due to nitrate and fluoride exposure.
Groundwater is a vital source of freshwater, but its quality is often compromised by various physiochemical factors. In the Mid-Gangetic Plains, there is a concerning escalation in the degradation of groundwater quality due to anthropogenic interventions. However, there remains a paucity of comprehensive knowledge concerning groundwater quality and the associated health hazards it poses. In response to this gap, the current study focuses on Nalanda district (Bihar), where 78 groundwater samples were collected across district in the month of May 2022 and their various water quality parameters were quantified as per standard methods. The adequacy of groundwater for human use was assessed using an entropy-based water quality index (EWQI), which also evaluated the potential human health risk stemming from nitrate and fluoride contamination. Furthermore, an empirical Bayesian kriging (EBK) driven geostatistical approach was utilized to predict water quality parameters at ungauged sites. The analysis of results disclosed that the ionic dominance in groundwater followed the sequence as cations Ca2+ > Mg2+, and anions HCO3- > SO42- > Cl- > NO3- > F- > PO43-. The concentration of NO3- and F- exceeded the permissible BIS levels by 11.5% and 6.5% of the samples respectively. The analysis of EBK models suggested K-Bessel as the best-fit model for pH, Mg2+, TH, F-, NO3-, and SO42- spatial interpolation while exponential EBK model for EC, Cl-, and PO43- and whittle EBK model for TDS, Ca2+, and HCO3- spatial interpolation. Spearman's correlation analysis revealed that elevated TDS and EC levels, coupled with correlations between NO3-, SO42-, and Cl-, suggest anthropogenic influences. The EWQI of the groundwater samples ranged from 36.28 to 180.80. The analysis of EWQI values revealed predominantly fair to good groundwater quality across the study area, suitable for drinking purposes. The hazard quotients for NO3- and F- indicate that non-carcinogenic health risks are more significant with nitrate pollution. The combined health impact was assessed using total hazard index (HI), ranging from 0.20 to 3.29 for children, 0.19 to 3.05 for males, and 0.17 to 2.70 for females. The cumulative probability distribution revealed total hazard index (HI) > 1 in 41.56%, 34.62%, and 28.21% of samples for children, males, and females. The HI analysis indicated a substantially higher risk for children compared to adults within the study area. This study offers a novel combination of entropy-based water quality assessment and geostatistical EBK modeling to evaluate groundwater quality and health risks in ungauged areas. The findings provide valuable insights for improved groundwater management and health risk mitigation.
Kumar A
,Singh A
《-》
-
Hydrochemical processes and fluoride enrichment patterns in high-fluoride geothermal water in the Weihe Basin, China.
The enrichment of fluoride in the deep geothermal water of the Lantian - Bahe Formation in parts of the Weihe Basin in China is a potential health hazard for the millions of inhabitants of this region. We conducted hydrochemical and hydrogeological analyses of water samples from 31 geothermal wells in the Weihe Basin, with the aims of determining the distribution characteristics, enrichment patterns, hydrochemical processes, and the factors influencing the geochemistry of deep geothermal fluids. We also evaluated the potential health hazards of fluoride ions in these fluids. Our results show that geothermal fluids with high fluoride content are widely distributed in the deep aquifers of the Weihe Basin. The principal hydrochemical types are: HCO3-Na and SO4⋅HCO3⋅Cl-Na. We used hydrodynamic simulation and regression analysis to show that the high proportion of HCO3- in the geothermal water facilitates the precipitation of Ca2+ and the dissolution of fluorine-bearing minerals. The high temperature, alkaline environment, cation exchange reactions, and dissolution and precipitation processes lead to Ca2+ depletion, which facilitates the release of fluoride ions from the surrounding rocks into the geothermal fluids. A human health risk assessment shows that the hazard quotient (HQ) values of geothermal water for adult males, adult females, children, and infants are: 3.96 - 14.41 (median 6.55), 3.32 - 12.08 (median 4.50), 4.63 - 16.84 (median 5.50), and 7.48 - 27.22 (median 9.00), respectively. Infants are the most susceptible to the effects of high fluoride in groundwater due to their physiological characteristics. while the potential health risks of F- for children and adult women/men are relatively low. Therefore, in the process of developing deep geothermal water, it is necessary to prevent it from mixing into shallow drinking water as much as possible. If the fluoride ion content in the shallow water exceeds the standard, it may have an impact on the local environment and residents' health. These findings provide a scientific foundation for the effective management of high fluoride groundwater in the Weihe Basin and analogous regions elsewhere.
Liu J
,Ren Z
,Yu Q
,Qi K
,Wu H
,Wang Z
,Zhang G
,Zhang Y
,Jia M
,Jia P
... -
《-》