Buyang Huanwu Decoction restores the balance of mitochondrial dynamics after cerebral ischemia-reperfusion through calcium overload reduction by the PKCε-Nampt-Sirt5 axis.

来自 PUBMED

作者:

Liu ZYin MLi JWang JJin XZhou XGao W

展开

摘要:

Stroke is a common condition that poses a significant threat to human health. Buyang Huanwu Decoction (BYHWD) is a traditional treatment used for stroke management. However, the exact mechanism by which BYHWD mitigates cerebral ischemia-reperfusion by regulating calcium overload and restoring mitochondrial function is not yet fully understood. The objective of this research was to examine the neuroprotective properties of BYHWD in reducing the damage produced by cerebral ischemia/reperfusion (I/R) injury via the modulation of calcium overload and mitochondrial dynamics (MD). MCAO/R model success was evaluated via PSI laser scatter flowmetry. The neurological function scores were assessed. The cerebral infarct (CI) volume was detected via TTC staining. NeuN expression was detected via immunohistochemistry, and degenerated neurons were observed via FJC staining. The mitochondrial permeability transition pore (mPTP), the mitochondrial membrane potential (MMP), and ATP were detected. The reactive oxygen species (ROS) content and the NAD+/NADH ratio were determined. The glutamate (Glu) and glutamine (Gln) contents as well as the Ca2+ concentration were determined. The expression of PKCε, p-PKCε, namely, Sirt5, GLS, Drp1, p-Drp1 616, Fis1, Opa1, and Mfn2 was determined via Western blotting. Immunohistochemistry was used to detect p-PKCε, which is expressed at high levels. Immunofluorescence was used to detect p-Drp1 616, Opa1 and Sirt5 fluorescence intensity. BYHWD treatment enhanced neurological function, decreased the amount of CI, mitigated neuronal damage, decreased mPTP opening, restored the MMP, increased ATP synthesis, and decreased the ROS content after brain I/R. It also increased PKCε, p-PKCε, Sirt5, GLS, Opa1 and Mfn2 expression; downregulated p-Drp1 616, Drp1 and Fis1 expression; elevated the NAD+/NADH ratio and Gln content; and decreased the Glu content and Ca2+ concentration. The effects of BYHWD were reversed by the administration of the PKCε inhibitor εV1-2. BYHWD administration led to increased PKCε mRNA expression. BYHWD modulates MD by diminishing calcium overload through the PKCε-Nampt-Sirt5 axis, which restores mitochondrial function and mitigates brain I/R damage.

收起

展开

DOI:

10.1016/j.jep.2024.119003

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读