The administration of Glycyrrhiza polysaccharides mitigates liver injury in mice caused by mancozeb via the Keap1-Nrf2/NF-κB pathway.

来自 PUBMED

作者:

Gao NLi YZhang LZhang YWang X

展开

摘要:

The extensive utilization of mancozeb (MCZ) poses environmental pollution risks, threatens human health, particularly hepatotoxicity. Glycyrrhiza polysaccharides (GP) exhibit antioxidant, anti-inflammatory and other biological activities. The aim of this study is to explore the mechanism of liver injury in mice exposed to MCZ and the protective effect of GP on alleviating MCZ induced liver injury. Initially, 70 female mice were divided into 7 groups, and the optimal dose of MCZ induced liver injury in mice was screened by oral administration different doses of MCZ (0, 50, 100, 150, 200, 250 and 300 mg/kg MCZ). The results demonstrated that, compared to the blank control group, as the concentration of MCZ increased, several physiological and biochemical parameters were significantly affected. Specifically, body weight and liver index significantly decreased, while the activities of SOD and CAT also decreased. Additionally, the content of ROS increased, the levels of Keap1 and Nrf2 proteins increased, the mRNA levels of Gpx2 and HO-1decreased, and the mRNA levels of Gstt2, GcLc and NQO1 were upregulated. Based on the test data, select 100 mg/kg MCZ as the optimal modeling dose for experimental animals. Sixty female mice were divided into six groups and orally administered: control group A (0.2 mL deionized water), model group B (100 mg/kg MCZ), positive control group F (100 mg/kg MCZ+100 mg/kg VC), the high-dose GP group C (100mg/kgMCZ+200mg/kgGP), the medium-dose GP group D (100 mg/kg MCZ+150mg/kgGP) and the low-dose GP group E (100 mg/kg MCZ+100mg/kgGP). The results showed that compared to the model group, adding GP alleviated the effects of MCZ on body weight, liver index, CAT and SOD activity, MDA content, HO-1, TNF-α, and IL-1β. Additionally, the addition of GP decreased the expression of Keap1, Nrf2, NF-kB, and NQO1, GcLc, and Gstt2 mRNA. GP ameliorated liver vacuolar degeneration, steatosis and nuclear pyknosis ameliorate by MCZ. The results show that MCZ triggers hepatotoxicity via the activation of the Keap1/Nrf2 signaling pathway, whereas GP has the potential to mitigate liver damage caused by MCZ exposure by inhibiting this pathway.

收起

展开

DOI:

10.1016/j.fct.2024.115088

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读