Ammopiptanthus nanus (M. Pop.) Cheng f. stem ethanolic extract ameliorates rheumatoid arthritis by inhibiting PI3K/AKT/NF-κB pathway-mediated macrophage infiltration.

来自 PUBMED

作者:

Yao YWang JZhang HPeng TSun YZhang RMeng XLu XGao YJin YZhang YChen L

展开

摘要:

Ammopiptanthus nanus (M. Pop.) Cheng f. (A. nanus), a traditional Kirgiz medicinal plant, its stem has shown potential in treating rheumatoid arthritis (RA) in China, either through oral medication or by topical application directly to the affected joints, but its underlying mechanism of action remains unexplored. The purpose of this study is to elucidate pharmacological mechanism of A. nanus in ameliorating RA using a comprehensive approach that combines network pharmacology, molecular docking and experimental evaluations. Firstly, the major constituents of A. nanus stem ethanolic extract were identified and quantified by High-Performance Liquid Chromatography (HPLC). Disease target data from Gene Cards database was then used to define RA-associated targets. A protein-protein interaction (PPI) network was created via STRING database. The DAVID database powered gene ontology (GO) function and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to gain functional insights. In vitro, RAW264.7 cells were treated with A. nanus to investigate the roles of target proteins and pathways during lipopolysaccharide (LPS) - induced inflammation. Immunofluorescence assays were performed to assess the effects of A. nanus on macrophage infiltration. The key targets and signalling pathways were validated using enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), molecular docking, immunohistochemical analysis, western blotting and immunofluorescence. Finally, the therapeutic potential of A. nanus in RA was evaluated in a carrageenan-induced rat model. Network analysis identified 31 potential targets of A. nanus associated with RA, including 10 hub targets. KEGG analysis highlighted the involvement of PI3K/AKT signaling pathway. In vivo experiments demonstrated that A. nanus treatment significantly protected against carrageenan-induced inflammatory paw tissue and attenuated macrophage infiltration. Both in vivo and in vitro experiments confirmed that A. nanus significantly downregulated the protein expression of COX-2, iNOS and IL-1β, and inhibited PI3K/AKT/NFκB pathway, which are closely linked to RA. Furthermore, molecular docking and cellular thermal shift assay revealed that licoflavanone showed a strong binding affinity with key targets. In summary, this study provides the first evidence of the potent anti-inflammatory activity of A. nanus in experimental RA. The mechanism of action appears to involve inactivation of the PI3K/AKT/NF-κB pathway-mediated macrophage infiltration. These findings indicate that A. nanus has significant potential as a therapeutic potential agent for RA treatment and offer novel insights for future research and drug development in this field.

收起

展开

DOI:

10.1016/j.jep.2024.118974

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读