Predicting mid- and late-life dementia risk in primary care: A prognostic study from a national health screening cohort.

来自 PUBMED

作者:

Jung WPark SHKim SLee JPark JJeong SMLee SYHan KShin DW

展开

摘要:

The objective of this study is to develop and validate dementia risk prediction models for mid- and late-life individuals that are based on accessible variables within a primary care setting. Using the Korean National Health Insurance Service database (2010-2019), we analyzed 6,696,073 individuals aged 40 and older who participated in a national health screening program over a mean follow-up of 8.95 years. Potential predictors were selected based on a literature review and the available data. Dementia cases were identified using claim-based codes and validated by corresponding prescription information. 5-year dementia risk prediction models for mid-life (40-59 years), and late-life (60+ years) stages were developed using the Cox proportional hazards model. Model performance was assessed through discrimination and calibration. Both models included age, sex, body mass index, smoking, alcohol consumption, physical activity, diabetes, hypertension, dyslipidemia, and chronic kidney disease. The models' AUROCs were 0.764 for mid-life and 0.743 for late-life. The impact of predictors on dementia risk was consistently stronger in mid-life than in late-life stages. Our models showed good calibration with low-risk estimates in mid-life and overall in late-life. These findings underscore the crucial role of managing modifiable risk factors, particularly during mid-life to reduce dementia risk.

收起

展开

DOI:

10.1016/j.psychres.2024.116237

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读