Prognostic value of a lactate metabolism gene signature in lung adenocarcinoma and its associations with immune checkpoint blockade therapy response.

来自 PUBMED

作者:

Huang TLian DChen MLiu YZhang MZeng DZhou SKYing W

展开

摘要:

Lung adenocarcinoma (LUAD) is a study that examines the prognostic value of lactate metabolism genes in tumor cells, which are associated with clinical prognosis. We analyzed the expression and clinical data for LUAD from The Cancer Genome Atlas database, using the GSE68465 dataset from the Gene Expression Omnibus and the MSigDB database. LASSO Cox regression and stepwise Cox regression were used to identify the optimal lactate metabolism gene signature. Differences in immune infiltration, tumor mutation burden (TMB), and response to immune checkpoint blockade (ICB) therapy were evaluated between groups. LASSO and Cox regression analyses showed an eight-lactate metabolism gene signature for model construction in both TCGA cohort and GSE68465 data, with higher survival outcomes in high-risk groups. The lactate metabolism risk score had an independent prognostic value (hazard ratio: 2.279 [1.652-3.146], P < .001). Immune cell infiltration differed between the risk groups, such as CD8+ T cells, macrophages, dendritic cells, mast cells, and neutrophils. The high-risk group had higher tumor purity, lower immune and stromal scores, and higher TMB. High-risk samples had high tumor immune dysfunction and exclusion (TIDE) scores and low cytolytic activity (CYT) scores, indicating a poor response to ICB therapy. Similarly, most immune checkpoint molecules, immune inhibitors/stimulators, and major histocompatibility complex (MHC) molecules were highly expressed in the high-risk group. The 8-lactate metabolism gene-based prognostic model predicts patient survival, immune infiltration, and ICB response in patients with LUAD, driving the development of therapeutic strategies to target lactate metabolism.

收起

展开

DOI:

10.1097/MD.0000000000039371

被引量:

0

年份:

2024

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(59)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读