A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries.
摘要:
The application of solid-state electrolytes (SSEs) is anticipated to enhance the safety performance of lithium metal batteries (LMBs). However, the progress of SSEs has been hindered by the unstable electrode-electrolyte interfaces (EEIs). In this study, in-situ polymerization of 1,3-dioxolane (DOL) is employed for the preparation of SSEs, with the addition of tributyl borate (TBB) to establish stable EEIs, particularly under high-voltage conditions. On one hand, the addition of TBB promotes the dissociation of lithium salts and increases the concentration of free Li+, resulting in an increase in room temperature ionic conductivity to 1.13 × 10-4 S cm-1 and an improvement in the Li+ transference number to 0.69 for the prepared poly-DOL electrolytes (PDE-TBB). Benefiting from the enhanced Li+ transport, the Li/PDE-TBB/Li symmetric cell exhibits a cycle life exceeding 1,000 h with a low polarization voltage as low as 12 mV, and the Li/PDE-TBB/LiFePO4 cell demonstrates exceptional cyclic stability over 800 cycles at 1C, with a coulombic efficiency exceeding 99.8 % and a capacity retention of 89.6 %. On the other hand, PDE-TBB exhibits improved stability under high-voltage conditions and the capacity to establish robust boron-rich cathode electrolyte interphase (CEI) on the LiNi0.8Co0.1Mn0.1O2 (NCM811) surface, thereby enhancing the structural stability of cathode materials and ensuring exceptional cycling performance of Li/PDE-TBB/NCM811cell. This work presents a promising strategy for developing novel ether-based SSEs suitable for high-voltage lithium metal batteries.
收起
展开
DOI:
10.1016/j.jcis.2024.10.024
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无