Recursive partitioning analysis model for de novo metastatic nasopharyngeal carcinoma treated with locoregional radiotherapy following chemoimmunotherapy.

来自 PUBMED

作者:

Wen DGu LLong HLiu SLuo MLi RLiu RLin JJin JXiong LTang LMai HLiu LLiang YChen QGuo S

展开

摘要:

Chemoimmunotherapy is the first-line treatment of de novo metastatic nasopharyngeal carcinoma (dmNPC), with additional locoregional radiotherapy (LRRT) significantly prolonging patient survival. De novo metastatic nasopharyngeal carcinoma, however, demonstrates considerable heterogeneity, resulting in significant variability in patient outcomes. We developed and validated a prognostic tool for patients undergoing first-line chemoimmunotherapy plus LRRT and to evaluate the benefit of local therapy (LT) for distant metastases across different risk levels. We studied 364 dmNPC patients receiving initial platinum-based chemotherapy and anti-programmed cell death protein 1 immunotherapy followed by LRRT. Patients were randomly divided into training and validation cohorts (7 : 3 ratio). The primary endpoint was progression-free survival (PFS). A prognostic model for PFS was developed using recursive partitioning analysis (RPA). An RPA model categorized patients into five prognostic groups based on number of metastatic lesions, liver metastasis status, and post-treatment Epstein-Barr virus DNA levels. Survival analysis identified three distinct risk groups. High-risk patients had significantly poorer PFS compared with medium- and low-risk groups (2-year PFS rate: training cohort: 13.7% versus 69.4% versus 94.4%, P < 0.001; validation cohort: 7.8% versus 65.1% versus 87.3%, P < 0.001). We investigated the impact of LT for distant metastases across these risk groups and found that only patients in the medium-risk group derived benefit from LT (2-year PFS rate: 77.5% versus 64.0%; hazard ratio = 0.535, 95% confidence interval 0.297-0.966, P = 0.035). Conversely, no survival benefit from LT for distant metastases was observed in the low-risk (P = 0.218) and high-risk subgroups (P = 0.793). Our RPA-based prognostic model integrates number of metastatic lesions, liver metastasis status, and post-treatment Epstein-Barr virus DNA levels to predict PFS in dmNPC patients undergoing chemoimmunotherapy plus LRRT. This model offers personalized treatment guidance, suggesting that patients in the medium-risk group may benefit from LT for distant metastases, while those in high- and low-risk groups may not.

收起

展开

DOI:

10.1016/j.esmoop.2024.103960

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(31)

引证文献(0)

来源期刊

ESMO Open

影响因子:6.876

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读