-
Safety, tolerability, and efficacy of fasudil in amyotrophic lateral sclerosis (ROCK-ALS): a phase 2, randomised, double-blind, placebo-controlled trial.
Fasudil is a small molecule inhibitor of Rho-associated kinase (ROCK) and is approved for the treatment of subarachnoid haemorrhage. In preclinical studies, fasudil has been shown to attenuate neurodegeneration, modulate neuroinflammation, and foster axonal regeneration. We aimed to investigate the safety, tolerability, and efficacy of fasudil in patients with amyotrophic lateral sclerosis.
ROCK-ALS was a phase 2, randomised, double-blind, placebo-controlled trial conducted at 19 amyotrophic lateral sclerosis centres in Germany, France, and Switzerland. Individuals (aged 18-80 years) with at least probable amyotrophic lateral sclerosis (as per the revised El Escorial criteria), a disease duration of 6-24 months, and a slow vital capacity greater than 65% of predicted normal were eligible for inclusion. Patients were randomly assigned (1:1:1) to receive 30 mg (15 mg twice daily) or 60 mg (30 mg twice daily) fasudil or matched placebo intravenously for 20 days over a 4-week period. Follow-up assessments were performed at 45, 90, and 180 days after treatment initiation. The co-primary endpoints were safety until day 180 (defined as the proportion without drug-related serious adverse events) and tolerability during the treatment period (defined as the proportion who did not discontinue treatment due to suspected drug-related adverse events). The primary analyses were carried out in the intention-to-treat population, which included all participants who entered the treatment phase. This trial is registered at ClinicalTrials.gov (NCT03792490) and Eudra-CT (2017-003676-31) and is now completed.
Between Feb 20, 2019, and April 20, 2022, 120 participants were enrolled and randomised; two individuals assigned fasudil 30 mg withdrew consent before the baseline visit. Thus, the intention-to-treat population comprised 35 in the fasudil 30 mg group, 39 in the fasudil 60 mg group, and 44 in the placebo group. The estimated proportion without a drug-related serious adverse event was 1·00 (95% CI 0·91 to 1·00) with placebo, 1·00 (0·89 to 1·00) with fasudil 30 mg, and 1·00 (0·90 to 1·00) with fasudil 60 mg; the difference in proportions was 0·00 (95% CI -0·11 to 0·10; p>0·99) for fasudil 30 mg versus placebo and 0·00 (-0·10 to 0·10; p>0·99) for fasudil 60 mg versus placebo. Treatment tolerability (the estimated proportion who did not discontinue) was 0·93 (95% CI 0·81 to 0·99) with placebo, 1·00 (0·90 to 1·00) with fasudil 30 mg, and 0·90 (0·76 to 0·97) with fasudil 60 mg; the difference in proportions was 0·07 (95% CI -0·05 to 0·20; p=0·25) for fasudil 30 mg versus placebo, and -0·03 (-0·18 to 0·10; p=0·70) for fasudil 60 mg versus placebo. Eight deaths occurred: two in the placebo group, four in the fasudil 30 mg group, and two in the fasudil 60 mg group. The most common serious adverse events were respiratory failure (seven events), gastrostomy (five events), pneumonia (four events), and dysphagia (four events). No serious adverse events or deaths were attributed to study treatment. Adverse events, which were mainly related to disease progression, occurred in 139 participants in the placebo group, 108 in the fasudil 30 mg group, and 105 in the fasudil 60 mg group.
Fasudil was well tolerated and safe in people with amyotrophic lateral sclerosis. The effect of fasudil on efficacy outcomes should be explored in larger clinical trials with a longer treatment duration, oral administration, and potentially higher dose of the trial drug.
Framework of the E-Rare Joint Transnational Call 2016 "Clinical research for new therapeutic uses of already existing molecules (repurposing) in rare diseases".
Koch JC
,Leha A
,Bidner H
,Cordts I
,Dorst J
,Günther R
,Zeller D
,Braun N
,Metelmann M
,Corcia P
,De La Cruz E
,Weydt P
,Meyer T
,Großkreutz J
,Soriani MH
,Attarian S
,Weishaupt JH
,Weyen U
,Kuttler J
,Zurek G
,Rogers ML
,Feneberg E
,Deschauer M
,Neuwirth C
,Wuu J
,Ludolph AC
,Schmidt J
,Remane Y
,Camu W
,Friede T
,Benatar M
,Weber M
,Lingor P
,ROCK-ALS Study group
... -
《-》
-
Efficacy and safety of filgotinib as induction and maintenance therapy for Crohn's disease (DIVERSITY): a phase 3, double-blind, randomised, placebo-controlled trial.
There is a need for efficacious therapies for patients with Crohn's disease that are better tolerated and more durable than available treatments. We aimed to evaluate the efficacy and safety of filgotinib, an oral Janus kinase 1 preferential inhibitor, for treating Crohn's disease.
This phase 3, double-blind, randomised, placebo-controlled trial was conducted in 371 centres in 39 countries. Eligible patients were aged 18-75 years with moderately to severely active Crohn's disease for at least 3 months before enrolment. Patients were enrolled into one of two induction studies on the basis of their experience with biological agents (induction study A included biologic-naive and later biologic-experienced patients and induction study B included biologic-experienced patients). In both induction studies, patients were randomly assigned (1:1:1), using an interactive web response system, to receive oral filgotinib 200 mg, filgotinib 100 mg, or placebo once daily for 11 weeks. Patients who received filgotinib and had two-item patient-reported outcome (PRO2) clinical remission or an endoscopic response at week 10 were re-randomised (2:1) to receive their induction dose or placebo orally, once daily to the end of week 58 in the maintenance study. Co-primary endpoints were PRO2 clinical remission and an endoscopic response at week 10 (induction studies) and week 58 (maintenance study). PRO2 clinical remission was defined as an abdominal pain subscore of not more than 1 and a liquid or very soft stool frequency subscore of not more than 3 (from eDiary data) and endoscopic response was defined as a reduction of at least 50% in Simple Endoscopic Score for Crohn's disease from induction baseline (from central reading of endoscopy). For the induction studies, efficacy was assessed in all randomly assigned patients who received at least one dose of study drug. For the maintenance study, efficacy was assessed in all patients from either filgotinib treatment group in the induction studies who reached PRO2 clinical remission or an endoscopic response at week 10, and who were re-randomised and received at least one dose of study drug in the maintenance study. Patients who received placebo throughout the induction and maintenance studies were not included in the full analysis set for the maintenance study. Safety was assessed in all patients who received at least one dose of study drug. This trial is complete and is registered with ClinicalTrials.gov, NCT02914561.
Between Oct 31, 2016, and Nov 11, 2022, 2634 patients were screened, of whom 1372 were enrolled (induction study A: n=707, induction study B: n=665, and maintenance study: n=481). There were 346 (49%) women and 358 (51%) men in induction study A, 356 (54%) women and 303 (46%) men in induction study B, and 242 women (51%) and 236 men (49%) in the maintenance study. Significantly more patients had PRO2 clinical remission at week 10 with filgotinib 200 mg than with placebo in induction study B (29·7% vs 17·9%, difference 11·9%; 95% CI 3·7 to 20·2, p=0·0039) but not induction study A (32·9% vs 25·7%, 6·9%; -1·4 to 15·2, p=0·0963); there was no significant difference for endoscopic response (induction study A: 23·9% vs 18·1%, difference 5·5%; 95% CI -2·0 to 12·9, p=0·1365; induction study B: 11·9% vs 11·4%, 0·1%; -6·5 to 6·6, p=0·9797). At week 58, both co-primary endpoints were reported in greater proportions of patients who received filgotinib 200 mg than in those who received placebo (PRO2 clinical remission: 43·8% vs 26·4%, difference 16·8%; 95% CI 2·0 to 31·6, p=0·0382; endoscopic response: 30·4% vs 9·4%, difference 20·6%; 95% CI 8·2 to 33·1, p=0·0038). Co-primary endpoints were not met for filgotinib 100 mg in any study. In the induction studies, the most frequently reported treatment-emergent adverse events (TEAEs; ≥5% of patients in any group) were abdominal pain; arthralgia; an exacerbation, flare, or worsening of Crohn's disease; headache; nasopharyngitis; nausea; and pyrexia. In the maintenance study, the most frequently reported TEAEs (≥5% of patients in any filgotinib or associated placebo group) were those reported in the induction studies (except for headache) and abdominal distension, upper abdominal pain, anaemia, and flatulence. Serious TEAEs were reported in 49 patients in induction study A (18 [8%]) of 222 patients in the filgotinib 200 mg group, 16 [7%] of 245 patients in the filgotinib 100 mg group, and 15 [6%] of 237 patients in the placebo group), 81 patients in induction study B (19 [9%] of 202 patients in the filgotinib 200 mg group, 36 [16%] of 228 patients in the filgotinib 100 mg group, and 26 [11%] of 229 patients in the placebo group), and 49 patients in the maintenance study (13 [11%] of 118 patients in the filgotinib 200 mg-filgotinib 200 mg group, five [9%] of 56 patients in the filgotinib 200 mg-placebo group, 14 [13%] of 104 patients in the filgotinib 100 mg-filgotinib 100 mg group, three [5%] of 55 patients in the filgotinib 100 mg-placebo group, and 14 [10%] of 145 patients in the placebo-placebo group). No deaths were reported during the induction and maintenance studies.
Filgotinib 200 mg did not meet the co-primary endpoints of clinical remission and an endoscopic response at week 10, but did meet the co-primary endpoints at week 58. Filgotinib treatment was well tolerated, and no new safety signals were reported.
Galapagos.
Vermeire S
,Schreiber S
,Rubin DT
,D'Haens G
,Reinisch W
,Watanabe M
,Mehta R
,Roblin X
,Beales I
,Gietka P
,Hibi T
,Hospodarskyy I
,Ritter T
,Genovese MC
,Kwon P
,Santermans E
,Le Brun FO
,Barron R
,Masior T
,Danese S
... -
《The Lancet Gastroenterology & Hepatology》
-
Safety, tolerability, and pharmacokinetics of antisense oligonucleotide BIIB078 in adults with C9orf72-associated amyotrophic lateral sclerosis: a phase 1, randomised, double blinded, placebo-controlled, multiple ascending dose study.
Hexanucleotide repeat expansion of C9orf72 is a common genetic cause of amyotrophic lateral sclerosis (ALS). No C9orf72-targeted treatments are available. BIIB078 is an investigational antisense oligonucleotide targeting C9orf72 sense RNA. We aimed to assess the safety, tolerability, and pharmacokinetics of BIIB078 in participants with C9orf72-associated ALS.
This phase 1, randomised controlled trial was done at 22 sites in six countries (Canada, Ireland, Netherlands, Switzerland, UK, and USA). Adults with ALS and a pathogenic repeat expansion in C9orf72 were randomly assigned within six cohorts, via Interactive Response Technology in a 3:1 ratio per cohort, to receive BIIB078 (5 mg, 10 mg, 20 mg, 35 mg, 60 mg, or 90 mg in cohorts 1-6, respectively) or placebo, via an intrathecal bolus injection. The treatment period consisted of three loading doses of study treatment, administered approximately once every 2 weeks, followed by monthly maintenance doses during a treatment period of about 3 months for cohorts 1-3 and about 6 months for cohorts 4-6. Patients and investigators were masked to treatment assignment. The primary endpoint was the incidence of adverse events and serious adverse events. This trial was registered with ClinicalTrials.gov (NCT03626012) and is completed.
Between Sept 10, 2018, and Nov 17, 2021, 124 patients were screened for inclusion in the study. 18 patients were excluded and 106 participants were enrolled and randomly assigned to receive 5 mg (n=6), 10 mg (n=9), 20 mg (n=9), 35 mg (n=19), 60 mg (n=18), or 90 mg (n=18) of BIIB078, or placebo (n=27). 58 (55%) of 106 patients were female. All patients received at least one dose of study treatment and were included in all analyses. All participants had at least one adverse event; most adverse events were mild or moderate in severity and did not lead to treatment discontinuation. The most common adverse events in BIIB078-treated participants were falls, procedural pain, headache, and post lumbar puncture syndrome. 14 (18%) of 79 patients who received any dose of BIIB078 reported serious adverse events, compared with nine (33%) of 27 patients who received placebo. Five participants who received BIIB078 and three participants who received placebo had fatal adverse events: respiratory failure in a participant who received 10 mg BIIB078, ALS worsening in two participants who received 35 mg BIIB078, traumatic intracerebral haemorrhage in one participant who received 35 mg BIIB078, pulmonary embolism in one participant who received 60 mg BIIB078, and respiratory failure in three participants who received placebo. All deaths were assessed as not related to the study treatment by the reporting investigator.
On the basis of these phase 1 study results, including secondary and exploratory findings showing no reduction in neurofilament levels and no benefit on clinical outcomes relative to the placebo cohort, BIIB078 clinical development has been discontinued. However, these results will be informative in furthering our understanding of the complex pathobiology of C9orf72-associated ALS.
Biogen.
van den Berg LH
,Rothstein JD
,Shaw PJ
,Babu S
,Benatar M
,Bucelli RC
,Genge A
,Glass JD
,Hardiman O
,Libri V
,Mobach T
,Oskarsson B
,Pattee GL
,Ravits J
,Shaw CE
,Weber M
,Zinman L
,Jafar-Nejad P
,Rigo F
,Lin L
,Ferguson TA
,Gotter AL
,Graham D
,Monine M
,Inra J
,Sinks S
,Eraly S
,Garafalo S
,Fradette S
... -
《-》
-
Safety and efficacy of PfSPZ Vaccine against malaria in healthy adults and women anticipating pregnancy in Mali: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials.
Plasmodium falciparum parasitaemia during pregnancy causes maternal, fetal, and infant mortality. Poor pregnancy outcomes are related to blood-stage parasite sequestration and the ensuing inflammatory response in the placenta, which decreases over successive pregnancies. A radiation-attenuated, non-replicating, whole-organism vaccine based on P falciparum sporozoites (PfSPZ Vaccine) has shown efficacy at preventing infection in African adults. Here, we aimed to examine vaccine safety and efficacy of the PfSPZ Vaccine in adults and women who anticipated conception.
Two randomised, double-blind, placebo-controlled trials (phase 1 MLSPZV3 and phase 2 MLSPZV4) were conducted at a clinical research centre in Mali. MLSPZV3 included adults aged 18-35 years and MLSPZV4 included non-pregnant women aged 18-38 years who anticipated conception within a year of enrolment. In MLSPZV3, participants were stratified by village and randomly assigned (2:1) using block randomisation to receive three doses of 9 × 105 PfSPZ Vaccine or saline placebo at weeks 0, 1, and 4 (4-week schedule) or at weeks 0, 8, and 16 (16-week schedule) and a booster dose around 1 year later. In MLSPZV4, women received presumptive artemether-lumefantrine twice per day for 3 days 2 weeks before dose one and were randomly assigned (1:1:1) using block randomisation to receive three doses of 9 × 105 or 1·8 × 106 PfSPZ Vaccine or saline placebo all administered at weeks 0, 1, and 4 (4-week schedule). Participants in both studies received artemether-lumefantrine 2 weeks before dose three and additionally 2 weeks before dose four (booster dose) in MLSPZV3. Investigators and participants were masked to group assignment. The primary outcome, assessed in the as-treated population, was PfSPZ Vaccine safety and tolerability within 7 days after each dose. The secondary outcome, assessed in the modified intention-to-treat population, was vaccine efficacy against P falciparum parasitaemia (defined as the time-to-first positive blood smear) from dose three until the end of transmission season. In exploratory analyses, MLSPZV4 evaluated incidence of maternal obstetric and neonatal outcomes as safety outcomes, and vaccine efficacy against P falciparum parasitaemia during pregnancy (defined as time-to-first positive blood smear post-conception). In MLSPZV4, women were followed at least once a month with human chorionic gonadotropin testing, and those who became pregnant received standard of care (including intermittent presumptive sulfadoxine-pyrimethamine antimalarial drugs after the first trimester) during routine antenatal visits. These studies are registered with ClinicalTrials.gov, NCT03510481 and NCT03989102.
Participants were enrolled for vaccination during the onset of malaria seasons for two sequential studies conducted from 2018 to 2019 for MLSPZV3 and from 2019 to 2021 for MLSPZV4, with follow-up during malaria seasons across 2 years. In MLSPZV3, 478 adults were assessed for eligibility, of whom 220 were enrolled between May 30 and June 12, 2018, and then between Aug 13 and Aug 18, 2018, and 210 received dose one. 66 (96%) of 69 participants who received the 16-week schedule and 68 (97%) of 70 who received the 4-week schedule of the 9 × 105 PfSPZ Vaccine and 70 (99%) of 71 who received saline completed all three doses in year 1. In MLSPZV4, 407 women were assessed for eligibility, of whom 324 were enrolled from July 3 to July 27, 2019, and 320 received dose one of presumptive artemether-lumefantrine. 300 women were randomly assigned with 100 per group (PfSPZ Vaccine 9 × 105, 1·8 × 106, or saline) receiving dose one. First trimester miscarriages were the most commonly reported serious adverse event but occurred at a similar rate across study groups (eight [15%] of 54 with 9 × 105 PfSPZ Vaccine, 12 [21%] of 58 with 1·8 × 106 PfSPZ Vaccine, and five [12%] of 43 with saline). One unrelated maternal death occurred 425 days after the last vaccine dose in the 1·8 × 106 PfSPZ Vaccine group due to peritonitis shortly after childbirth. Most related adverse events reported in MLSPZV3 and MLSPZV4 were mild (grade 1) and frequency of adverse events in the PfSPZ Vaccine groups did not differ from that in the saline group. Two unrelated serious adverse events occurred in MLSPZV3 (one participant had appendicitis in the 9 × 105 PfSPZ Vaccine group and the other in the saline group died due to a road traffic accident). In MLSPZV3, the 9 × 105 PfSPZ Vaccine did not show vaccine efficacy against parasitaemia with the 4-week (27% [95% CI -18 to 55] in year 1 and 42% [-5 to 68] in year 2) and 16-week schedules (16% [-34 to 48] in year 1 and -14% [-95 to 33] in year 2); efficacies were similar or worse against clinical malaria compared with saline. In MLSPZV4, the PfSPZ Vaccine showed significant efficacy against parasitaemia at doses 9 × 105 (41% [15 to 59]; p=0·0069 in year 1 and 61% [36 to 77]; p=0·0011 in year 2) and 1·8 × 106 (54% [34 to 69]; p<0·0001 in year 1 and 45% [13 to 65]; p=0·029 in year 2); and against clinical malaria at doses 9 × 105 (47% [20 to 65]; p=0·0045 in year 1 and 56% [22 to 75]; p=0·0081 in year 2) and 1·8 × 106 (48% [22 to 65]; p=0·0013 in year 1 and 40% [2 to 64]; p=0·069 in year 2). Vaccine efficacy against post-conception P falciparum parasitaemia during first pregnancies that arose in the 2-year follow-up was 57% (14 to 78; p=0·017) in the 9 × 105 PfSPZ Vaccine group versus 49% (3 to 73; p=0·042) in the 1·8 × 106 PfSPZ Vaccine group. Among 55 women who became pregnant within 24 weeks after dose three, vaccine efficacy against parasitaemia was 65% (23 to 84; p=0·0088) with the 9 × 105 PfSPZ Vaccine and 86% (64 to 94; p<0·0001) with the 1·8 × 106 PfSPZ Vaccine. When combined in a post-hoc analysis, women in the PfSPZ Vaccine groups had a non-significantly reduced time-to-first pregnancy after dose one compared with those in the saline group (log-rank test p=0·056). Exploratory maternal obstetric and neonatal outcomes did not differ significantly between vaccine groups and saline.
PfSPZ Vaccine was safe and well tolerated in adults in Mali. The 9 × 105 and 1·8 × 106 doses of PfSPZ Vaccine administered as per the 4-week schedule, which incorporated presumptive antimalarial treatment before the first vaccine dose, showed significant efficacy against P falciparum parasitaemia and clinical malaria for two malaria transmission seasons in women of childbearing age and against pregnancy malaria. PfSPZ Vaccine without presumptive antimalarial treatment before the first vaccine dose did not show efficacy.
National Institute of Allergy and Infectious Diseases, National Institutes of Health, and Sanaria.
Diawara H
,Healy SA
,Mwakingwe-Omari A
,Issiaka D
,Diallo A
,Traore S
,Soumbounou IH
,Gaoussou S
,Zaidi I
,Mahamar A
,Attaher O
,Fried M
,Wylie BJ
,Mohan R
,Doan V
,Doritchamou JYA
,Dolo A
,Morrison RD
,Wang J
,Hu Z
,Rausch KM
,Zeguime A
,Murshedkar T
,Kc N
,Sim BKL
,Billingsley PF
,Richie TL
,Hoffman SL
,Dicko A
,Duffy PE
,PfSPZ Vaccine Study Team
... -
《-》
-
Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial.
The rate of antibiotic resistance continues to grow, outpacing small-molecule-drug development efforts. Novel therapies are needed to combat this growing threat, particularly for the treatment of urinary tract infections (UTIs), which are one of the largest contributors to antibiotic use and associated antibiotic resistance. LBP-EC01 is a novel, genetically enhanced, six-bacteriophage cocktail developed by Locus Biosciences (Morrisville, NC, USA) to address UTIs caused by Escherichia coli, regardless of antibiotic resistance status. In this first part of the two-part phase 2 ELIMINATE trial, we aimed to define a dosing regimen of LBP-EC01 for the treatment of uncomplicated UTIs that could advance to the second, randomised, controlled, double-blinded portion of the study.
This first part of ELIMINATE is a randomised, uncontrolled, open-label, phase 2 trial that took place in six private clinical sites in the USA. Eligible participants were female by self-identification, aged between 18 years and 70 years, and had an uncomplicated UTI at the time of enrolment, as well as a history of at least one drug-resistant UTI caused by E coli within the 12 months before enrolment. Participants were initially randomised in a 1:1:1 ratio into three treatment groups, but this part of the trial was terminated on the recommendation of the safety review committee after a non-serious tolerability signal was observed based on systemic drug exposure. A protocol update was then implemented, comprised of three new treatment groups. Groups A to C were dosed with intraurethral 2 × 1012 plaque-forming units (PFU) of LBP-EC01 on days 1 and 2 by catheter, plus one of three intravenous doses daily on days 1-3 of LBP-EC01 (1 mL of 1 × 1010 PFU intravenous bolus in group A, 1 mL of 1 × 109 PFU intravenous bolus in group B, and a 2 h 1 × 1011 PFU intravenous infusion in 100 mL of sodium lactate solution in group C). In all groups, oral trimethoprim-sulfamethoxazole (TMP-SMX; 160 mg and 800 mg) was given twice daily on days 1-3. The primary outcome was the level of LBP-EC01 in urine and blood across the treatment period and over 48 h after the last dose and was assessed in patients in the intention-to-treat (ITT) population who received at least one dose of LBP-EC01 and had concentration-time data available throughout the days 1-3 dosing period (pharmacokinetic population). Safety, a secondary endpoint, was assessed in enrolled patients who received at least one dose of study drug (safety population). As exploratory pharmacodynamic endpoints, we assessed E coli levels in urine and clinical symptoms of UTI in patients with at least 1·0 × 105 colony-forming units per mL E coli in urine at baseline who took at least one dose of study drug and completed their day 10 test-of-cure assessment (pharmacodynamic-evaluable population). This trial is registered with ClinicalTrials.gov, NCT05488340, and is ongoing.
Between Aug 22, 2022, and Aug 28, 2023, 44 patients were screened for eligibility, and 39 were randomly assigned (ITT population). Initially, eight participants were assigned to the first three groups. After the protocol was updated, 31 participants were allocated into groups A (11 patients), B (ten patients), and C (ten patients). One patient in group C withdrew consent on day 2 for personal reasons, but as she had received the first dose of the study drug was included in the modified ITT population. Maximum urine drug concentrations were consistent across intraurethral dosing, with a maximum mean concentration of 6·3 × 108 PFU per mL (geometric mean 8·8 log10 PFU per mL and geometric SD [gSD] 0·3). Blood plasma level of bacteriophages was intravenous dose-dependent, with maximum mean concentrations of 4·0 × 103 (geometric mean 3·6 log10 PFU per mL [gSD 1·5]) in group A, 2·5 × 103 (3·4 log10 PFU per mL [1·7]) in group B, and 8·0 × 105 (5·9 log10 PFU per mL [1·4]) in group C. No serious adverse events were observed. 44 adverse events were reported across 18 (46%) of the 39 participants in the safety population, with more adverse events seen with higher intravenous doses. Three patients in groups 1 to 3 and one patient in group C, all of whom received 1 × 1011 LBP-EC01 intravenously, had non-serious tachycardia and afebrile chills after the second intravenous dose. A rapid reduction of E coli in urine was observed by 4 h after the first treatment and maintained at day 10 in all 16 evaluable patients; these individuals had complete resolution of UTI symptoms by day 10.
A regimen consisting of 2 days of intraurethral LBP-EC01 and 3 days of concurrent intravenous LBP-EC01 (1 × 1010 PFU) and oral TMP-SMX twice a day was well tolerated, with consistent pharmacokinetic profiles in urine and blood. LBP-EC01 and TMP-SMX dosing resulted in a rapid and durable reduction of E coli, with corresponding elimination of clinical symptoms in evaluable patients. LBP-EC01 holds promise in providing an alternative therapy for uncomplicated UTIs, with further testing of the group A dosing regimen planned in the controlled, double-blind, second part of ELIMINATE.
Federal funds from the US Department of Health and Human Services, Administration for Strategic Preparedness and Response, and Biomedical Advanced Research and Development Authority (BARDA).
Kim P
,Sanchez AM
,Penke TJR
,Tuson HH
,Kime JC
,McKee RW
,Slone WL
,Conley NR
,McMillan LJ
,Prybol CJ
,Garofolo PM
... -
《-》