-
Revolutionizing Maternal Health: The Role of Artificial Intelligence in Enhancing Care and Accessibility.
Maternal health remains a critical global health challenge, with disparities in access to care and quality of services contributing to high maternal mortality and morbidity rates. Artificial intelligence (AI) has emerged as a promising tool for addressing these challenges by enhancing diagnostic accuracy, improving patient monitoring, and expanding access to care. This review explores the transformative role of AI in maternal healthcare, focusing on its applications in the early detection of pregnancy complications, personalized care, and remote monitoring through AI-driven technologies. AI tools such as predictive analytics and machine learning can help identify at-risk pregnancies and guide timely interventions, reducing preventable maternal and neonatal complications. Additionally, AI-enabled telemedicine and virtual assistants are bridging healthcare gaps, particularly in underserved and rural areas, improving accessibility for women who might otherwise face barriers to quality maternal care. Despite the potential benefits, challenges such as data privacy, algorithmic bias, and the need for human oversight must be carefully addressed. The review also discusses future research directions, including expanding AI applications in maternal health globally and the need for ethical frameworks to guide its integration. AI holds the potential to revolutionize maternal healthcare by enhancing both care quality and accessibility, offering a pathway to safer, more equitable maternal outcomes.
Mapari SA
,Shrivastava D
,Dave A
,Bedi GN
,Gupta A
,Sachani P
,Kasat PR
,Pradeep U
... -
《Cureus》
-
Artificial Intelligence, the Digital Surgeon: Unravelling Its Emerging Footprint in Healthcare - The Narrative Review.
Artificial Intelligence (AI) holds transformative potential for the healthcare industry, offering innovative solutions for diagnosis, treatment planning, and improving patient outcomes. As AI continues to be integrated into healthcare systems, it promises advancements across various domains. This review explores the diverse applications of AI in healthcare, along with the challenges and limitations that need to be addressed. The aim is to provide a comprehensive overview of AI's impact on healthcare and to identify areas for further development and focus.
The review discusses the broad range of AI applications in healthcare. In medical imaging and diagnostics, AI enhances the accuracy and efficiency of diagnostic processes, aiding in early disease detection. AI-powered clinical decision support systems assist healthcare professionals in patient management and decision-making. Predictive analytics using AI enables the prediction of patient outcomes and identification of potential health risks. AI-driven robotic systems have revolutionized surgical procedures, improving precision and outcomes. Virtual assistants and chatbots enhance patient interaction and support, providing timely information and assistance. In the pharmaceutical industry, AI accelerates drug discovery and development by identifying potential drug candidates and predicting their efficacy. Additionally, AI improves administrative efficiency and operational workflows in healthcare, streamlining processes and reducing costs. AI-powered remote monitoring and telehealth solutions expand access to healthcare, particularly in underserved areas.
Despite the significant promise of AI in healthcare, several challenges persist. Ensuring the reliability and consistency of AI-driven outcomes is crucial. Privacy and security concerns must be navigated carefully, particularly in handling sensitive patient data. Ethical considerations, including bias and fairness in AI algorithms, need to be addressed to prevent unintended consequences. Overcoming these challenges is critical for the ethical and successful integration of AI in healthcare.
The integration of AI into healthcare is advancing rapidly, offering substantial benefits in improving patient care and operational efficiency. However, addressing the associated challenges is essential to fully realize the transformative potential of AI in healthcare. Future efforts should focus on enhancing the reliability, transparency, and ethical standards of AI technologies to ensure they contribute positively to global health outcomes.
Shang Z
,Chauhan V
,Devi K
,Patil S
... -
《Journal of Multidisciplinary Healthcare》
-
Generative AI in healthcare: an implementation science informed translational path on application, integration and governance.
Artificial intelligence (AI), particularly generative AI, has emerged as a transformative tool in healthcare, with the potential to revolutionize clinical decision-making and improve health outcomes. Generative AI, capable of generating new data such as text and images, holds promise in enhancing patient care, revolutionizing disease diagnosis and expanding treatment options. However, the utility and impact of generative AI in healthcare remain poorly understood, with concerns around ethical and medico-legal implications, integration into healthcare service delivery and workforce utilisation. Also, there is not a clear pathway to implement and integrate generative AI in healthcare delivery.
This article aims to provide a comprehensive overview of the use of generative AI in healthcare, focusing on the utility of the technology in healthcare and its translational application highlighting the need for careful planning, execution and management of expectations in adopting generative AI in clinical medicine. Key considerations include factors such as data privacy, security and the irreplaceable role of clinicians' expertise. Frameworks like the technology acceptance model (TAM) and the Non-Adoption, Abandonment, Scale-up, Spread and Sustainability (NASSS) model are considered to promote responsible integration. These frameworks allow anticipating and proactively addressing barriers to adoption, facilitating stakeholder participation and responsibly transitioning care systems to harness generative AI's potential.
Generative AI has the potential to transform healthcare through automated systems, enhanced clinical decision-making and democratization of expertise with diagnostic support tools providing timely, personalized suggestions. Generative AI applications across billing, diagnosis, treatment and research can also make healthcare delivery more efficient, equitable and effective. However, integration of generative AI necessitates meticulous change management and risk mitigation strategies. Technological capabilities alone cannot shift complex care ecosystems overnight; rather, structured adoption programs grounded in implementation science are imperative.
It is strongly argued in this article that generative AI can usher in tremendous healthcare progress, if introduced responsibly. Strategic adoption based on implementation science, incremental deployment and balanced messaging around opportunities versus limitations helps promote safe, ethical generative AI integration. Extensive real-world piloting and iteration aligned to clinical priorities should drive development. With conscientious governance centred on human wellbeing over technological novelty, generative AI can enhance accessibility, affordability and quality of care. As these models continue advancing rapidly, ongoing reassessment and transparent communication around their strengths and weaknesses remain vital to restoring trust, realizing positive potential and, most importantly, improving patient outcomes.
Reddy S
《Implementation Science》
-
Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations.
Healthcare organizations have realized that Artificial intelligence (AI) can provide a competitive edge through personalized patient experiences, improved patient outcomes, early diagnosis, augmented clinician capabilities, enhanced operational efficiencies, or improved medical service accessibility. However, deploying AI-driven tools in the healthcare ecosystem could be challenging. This paper categorizes AI applications in healthcare and comprehensively examines the challenges associated with deploying AI in medical practices at scale. As AI continues to make strides in healthcare, its integration presents various challenges, including production timelines, trust generation, privacy concerns, algorithmic biases, and data scarcity. The paper highlights that flawed business models and wrong workflows in healthcare practices cannot be rectified merely by deploying AI-driven tools. Healthcare organizations should re-evaluate root problems such as misaligned financial incentives (e.g., fee-for-service models), dysfunctional medical workflows (e.g., high rates of patient readmissions), poor care coordination between different providers, fragmented electronic health records systems, and inadequate patient education and engagement models in tandem with AI adoption. This study also explores the need for a cultural shift in viewing AI not as a threat but as an enabler that can enhance healthcare delivery and create new employment opportunities while emphasizing the importance of addressing underlying operational issues. The necessity of investments beyond finance is discussed, emphasizing the importance of human capital, continuous learning, and a supportive environment for AI integration. The paper also highlights the crucial role of clear regulations in building trust, ensuring safety, and guiding the ethical use of AI, calling for coherent frameworks addressing transparency, model accuracy, data quality control, liability, and ethics. Furthermore, this paper underscores the importance of advancing AI literacy within academia to prepare future healthcare professionals for an AI-driven landscape. Through careful navigation and proactive measures addressing these challenges, the healthcare community can harness AI's transformative power responsibly and effectively, revolutionizing healthcare delivery and patient care. The paper concludes with a vision and strategic suggestions for the future of healthcare with AI, emphasizing thoughtful, responsible, and innovative engagement as the pathway to realizing its full potential to unlock immense benefits for healthcare organizations, physicians, nurses, and patients while proactively mitigating risks.
Esmaeilzadeh P
《-》
-
Artificial Intelligence in Obstetrics and Gynecology: Transforming Care and Outcomes.
The integration of artificial intelligence (AI) in obstetrics and gynecology (OB/GYN) is revolutionizing the landscape of women's healthcare. This review article explores the transformative impact of AI technologies on the diagnosis, treatment, and management of obstetric and gynecological conditions. We examine key advancements in AI-driven imaging techniques, predictive analytics, and personalized medicine, highlighting their roles in enhancing prenatal care, improving maternal and fetal outcomes, and optimizing gynecological interventions. The article also addresses the challenges and ethical considerations associated with the implementation of AI in clinical practice. This paper highlights the potential of AI to greatly improve the standard of care in OB/GYN, ultimately leading to better health outcomes for women, by offering a thorough overview of present AI uses and future prospects.
Patel DJ
,Chaudhari K
,Acharya N
,Shrivastava D
,Muneeba S
... -
《-》