Design and Evaluation of Peptide Inhibitors Targeting the Dimerization of SARS-CoV-2 Main Protease.
摘要:
The severe acute respiratory syndrome virus 2 (SARS-CoV-2) seriously impacted public health. The evolutionarily conserved viral chymotrypsin-like main protease (Mpro) is an important target for anti-SARS-CoV-2 drug development. Previous studies have shown that the eight N-terminal amino acids (N8) of SARS-CoV Mpro are essential for its dimerization, and are used to design inhibitors against SARS-CoV Mpro dimerization. Here, we established a simple readout assay using SDS-PAGE and Coomassie blue staining to measure inhibitory activity of N8 peptide derived from SARS-CoV-2 Mpro. To optimize its inhibitory effect, we then modified the side-chain length, charge, and hydrophilicity of the N8 peptide, and introduced a mutated Mpro recognition sequence. As a result, we obtained a series of potent peptide inhibitors against SARS-CoV-2 Mpro, with N8-A24 being the most efficient with an IC50 value of 1.44 mM. We observed that N8-A24 reduced Mpro dimerization with an IC50 value of 0.86 mM. Molecular docking revealed that N8-A24 formed hydrogen bond interactions with critical dimeric interface residues, thus inhibiting its dimerization and activity. In conclusion, our study not only discovers a series of peptide inhibitors targeting the SARS-CoV-2 Mpro dimerization, but also provides a promising strategy for the rational design of new inhibitors against COVID-19.
收起
展开
DOI:
10.1002/cbic.202400688
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无