Comparing the effects of time-restricted eating on glycaemic control in people with type 2 diabetes with standard dietetic practice: A randomised controlled trial.

来自 PUBMED

摘要:

To test the efficacy of time-restricted eating (TRE) in comparison to dietitian-led individualised dietary guidance to improve HbA1c in people with Type 2 diabetes mellitus. In a parallel groups design, 51 adults (35-65 y) with Type 2 diabetes mellitus and overweight/obesity (HbA1c ≥6.5% (48 mmol/mol), BMI ≥25-≤40 kg/m2) commenced a six-month intervention. Following baseline, participants were randomised to TRE (1000-1900 h) or DIET (individualised dietetic guidance) with four consultations over four months. Changes in HbA1c (primary), body composition, and self-reported adherence (secondary) were analysed using linear mixed models. A non-inferiority margin of 0.3% (4 mmol/mol) HbA1c was set a priori. Forty-three participants (56 ± 8 y, BMI: 33 ± 5 kg/m2, HbA1c: 7.6 ± 0.8%) completed the intervention. HbA1c was reduced (P=0.002; TRE: -0.4% (-5 mmol/mol), DIET: -0.3% (-4 mmol/mol)) with no group or interaction effects; TRE was non-inferior to DIET (-0.11%, 95%CI: -0.50% to 0.28%). Body mass reduced in both groups (TRE: -1.7 kg; DIET: -1.2 kg) via ∼900 kJ/d spontaneous energy reduction (P<0.001). Self-reported adherence was higher in TRE versus DIET (P<0.001). When individualised dietary guidance is not available, effective, and/or suitable, TRE may be an alternative dietary strategy to improve glycaemic control in people with Type 2 diabetes mellitus.

收起

展开

DOI:

10.1016/j.diabres.2024.111893

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读