Interventions for supporting pregnant women's decision-making about mode of birth after a caesarean.
Pregnant women who have previously had a caesarean birth and who have no contraindication for vaginal birth after caesarean (VBAC) may need to decide whether to choose between a repeat caesarean birth or to commence labour with the intention of achieving a VBAC. Women need information about their options and interventions designed to support decision-making may be helpful. Decision support interventions can be implemented independently, or shared with health professionals during clinical encounters or used in mediated social encounters with others, such as telephone decision coaching services. Decision support interventions can include decision aids, one-on-one counselling, group information or support sessions and decision protocols or algorithms. This review considers any decision support intervention for pregnant women making birth choices after a previous caesarean birth.
To examine the effectiveness of interventions to support decision-making about vaginal birth after a caesarean birth.Secondary objectives are to identify issues related to the acceptability of any interventions to parents and the feasibility of their implementation.
We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 June 2013), Current Controlled Trials (22 July 2013), the WHO International Clinical Trials Registry Platform Search Portal (ICTRP) (22 July 2013) and reference lists of retrieved articles. We also conducted citation searches of included studies to identify possible concurrent qualitative studies.
All published, unpublished, and ongoing randomised controlled trials (RCTs) and quasi-randomised trials with reported data of any intervention designed to support pregnant women who have previously had a caesarean birth make decisions about their options for birth. Studies using a cluster-randomised design were eligible for inclusion but none were identified. Studies using a cross-over design were not eligible for inclusion. Studies published in abstract form only would have been eligible for inclusion if data were able to be extracted.
Two review authors independently applied the selection criteria and carried out data extraction and quality assessment of studies. Data were checked for accuracy. We contacted authors of included trials for additional information. All included interventions were classified as independent, shared or mediated decision supports. Consensus was obtained for classifications. Verification of the final list of included studies was undertaken by three review authors.
Three randomised controlled trials involving 2270 women from high-income countries were eligible for inclusion in the review. Outcomes were reported for 1280 infants in one study. The interventions assessed in the trials were designed to be used either independently by women or mediated through the involvement of independent support. No studies looked at shared decision supports, that is, interventions designed to facilitate shared decision-making with health professionals during clinical encounters.We found no difference in planned mode of birth: VBAC (risk ratio (RR) 1.03, 95% confidence interval (CI) 0.97 to 1.10; I² = 0%) or caesarean birth (RR 0.96, 95% CI 0.84 to 1.10; I² = 0%). The proportion of women unsure about preference did not change (RR 0.87, 95% CI 0.62 to 1.20; I² = 0%).There was no difference in adverse outcomes reported between intervention and control groups (one trial, 1275 women/1280 babies): permanent (RR 0.66, 95% CI 0.32 to 1.36); severe (RR 1.02, 95% CI 0.77 to 1.36); unclear (0.66, 95% CI 0.27, 1.61). Overall, 64.8% of those indicating preference for VBAC achieved it, while 97.1% of those planning caesarean birth achieved this mode of birth. We found no difference in the proportion of women achieving congruence between preferred and actual mode of birth (RR 1.02, 95% CI 0.96 to 1.07) (three trials, 1921 women).More women had caesarean births (57.3%), including 535 women where it was unplanned (42.6% all caesarean deliveries and 24.4% all births). We found no difference in actual mode of birth between groups, (average RR 0.97, 95% CI 0.89 to 1.06) (three trials, 2190 women).Decisional conflict about preferred mode of birth was lower (less uncertainty) for women with decisional support (standardised mean difference (SMD) -0.25, 95% CI -0.47 to -0.02; two trials, 787 women; I² = 48%). There was also a significant increase in knowledge among women with decision support compared with those in the control group (SMD 0.74, 95% CI 0.46 to 1.03; two trials, 787 women; I² = 65%). However, there was considerable heterogeneity between the two studies contributing to this outcome ( I² = 65%) and attrition was greater than 15 per cent and the evidence for this outcome is considered to be moderate quality only. There was no difference in satisfaction between women with decision support and those without it (SMD 0.06, 95% CI -0.09 to 0.20; two trials, 797 women; I² = 0%). No study assessed decisional regret or whether women's information needs were met.Qualitative data gathered in interviews with women and health professionals provided information about acceptability of the decision support and its feasibility of implementation. While women liked the decision support there was concern among health professionals about their impact on their time and workload.
Evidence is limited to independent and mediated decision supports. Research is needed on shared decision support interventions for women considering mode of birth in a pregnancy after a caesarean birth to use with their care providers.
Horey D
,Kealy M
,Davey MA
,Small R
,Crowther CA
... -
《Cochrane Database of Systematic Reviews》
Antioxidants for female subfertility.
M.G. Showell, R. Mackenzie‐Proctor, V. Jordan, and R.J. Hart, “Antioxidants for Female Subfertility,” Cochrane Database of Systematic Reviews, no. 8 (2020): CD007807, https://doi.org/10.1002/14651858.CD007807.pub4 This Editorial Note is for the above article, published online on August 27, 2020, in Cochrane Library (cochranelibrary.com), and has been issued by the Publisher, John Wiley & Sons Ltd, in agreement with Cochrane. The Editorial note has been agreed due to concerns discovered by the Cochrane managing editor regarding the retraction of six studies in the Review (Badawy et al. 2006, 10.1016/j.fertnstert.2006.02.097; El Refaeey et al. 2014, 10.1016/j.rbmo.2014.03.011; El Sharkwy & Abd El Aziz 2019a, https://doi.org/10.1002/ijgo.12902; Gerli et al. 2007, https://doi.org/10.26355/eurrev_202309_33752, full text: https://europepmc.org/article/MED/18074942; Ismail et al. 2014, http://dx.doi.org/10.1016/j.ejogrb.2014.06.008; Hashemi et al. 2017, https://doi.org/10.1080/14767058.2017.1372413). In addition, expressions of concern have been published for two studies (Jamilian et al. 2018, https://doi.org/10.1007/s12011-017-1236-3; Zadeh Modarres 2018, https://doi.org/10.1007/s12011-017-1148-2). The retracted studies will be moved to the Excluded Studies table, and their impact on the review findings will be investigated and acted on accordingly in a future update. Initial checks indicate that removal of the six retracted studies did not make an appreciable difference to the results. Likewise, the studies for which Expressions of Concern were issued will be moved to the Awaiting classification table; they did not report any review outcomes, so removal will have no impact on the review findings.
A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility.
To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women.
We searched the following databases (from their inception to September 2019), with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of relevant studies and searched the trial registers.
We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility.
We used standard methodological procedures expected by Cochrane. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events.
We included 63 trials involving 7760 women. Investigators compared oral antioxidants, including: combinations of antioxidants, N-acetylcysteine, melatonin, L-arginine, myo-inositol, carnitine, selenium, vitamin E, vitamin B complex, vitamin C, vitamin D+calcium, CoQ10, and omega-3-polyunsaturated fatty acids versus placebo, no treatment/standard treatment or another antioxidant. Only 27 of the 63 included trials reported funding sources. Due to the very low-quality of the evidence we are uncertain whether antioxidants improve live birth rate compared with placebo or no treatment/standard treatment (odds ratio (OR) 1.81, 95% confidence interval (CI) 1.36 to 2.43; P < 0.001, I2 = 29%; 13 RCTs, 1227 women). This suggests that among subfertile women with an expected live birth rate of 19%, the rate among women using antioxidants would be between 24% and 36%. Low-quality evidence suggests that antioxidants may improve clinical pregnancy rate compared with placebo or no treatment/standard treatment (OR 1.65, 95% CI 1.43 to 1.89; P < 0.001, I2 = 63%; 35 RCTs, 5165 women). This suggests that among subfertile women with an expected clinical pregnancy rate of 19%, the rate among women using antioxidants would be between 25% and 30%. Heterogeneity was moderately high. Overall 28 trials reported on various adverse events in the meta-analysis. The evidence suggests that the use of antioxidants makes no difference between the groups in rates of miscarriage (OR 1.13, 95% CI 0.82 to 1.55; P = 0.46, I2 = 0%; 24 RCTs, 3229 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of multiple pregnancy (OR 1.00, 95% CI 0.63 to 1.56; P = 0.99, I2 = 0%; 9 RCTs, 1886 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of gastrointestinal disturbances (OR 1.55, 95% CI 0.47 to 5.10; P = 0.47, I2 = 0%; 3 RCTs, 343 women; low-quality evidence). Low-quality evidence showed that there was also no difference between the groups in rates of ectopic pregnancy (OR 1.40, 95% CI 0.27 to 7.20; P = 0.69, I2 = 0%; 4 RCTs, 404 women). In the antioxidant versus antioxidant comparison, low-quality evidence shows no difference in a lower dose of melatonin being associated with an increased live-birth rate compared with higher-dose melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). This suggests that among subfertile women with an expected live-birth rate of 24%, the rate among women using a lower dose of melatonin compared to a higher dose would be between 12% and 40%. Similarly with clinical pregnancy, there was no evidence of a difference between the groups in rates between a lower and a higher dose of melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). Three trials reported on miscarriage in the antioxidant versus antioxidant comparison (two used doses of melatonin and one compared N-acetylcysteine versus L-carnitine). There were no miscarriages in either melatonin trial. Multiple pregnancy and gastrointestinal disturbances were not reported, and ectopic pregnancy was reported by only one trial, with no events. The study comparing N-acetylcysteine with L-carnitine did not report live birth rate. Very low-quality evidence shows no evidence of a difference in clinical pregnancy (OR 0.81, 95% CI 0.33 to 2.00; 1 RCT, 164 women; low-quality evidence). Low quality evidence shows no difference in miscarriage (OR 1.54, 95% CI 0.42 to 5.67; 1 RCT, 164 women; low-quality evidence). The study did not report multiple pregnancy, gastrointestinal disturbances or ectopic pregnancy. The overall quality of evidence was limited by serious risk of bias associated with poor reporting of methods, imprecision and inconsistency.
In this review, there was low- to very low-quality evidence to show that taking an antioxidant may benefit subfertile women. Overall, there is no evidence of increased risk of miscarriage, multiple births, gastrointestinal effects or ectopic pregnancies, but evidence was of very low quality. At this time, there is limited evidence in support of supplemental oral antioxidants for subfertile women.
Showell MG
,Mackenzie-Proctor R
,Jordan V
,Hart RJ
... -
《Cochrane Database of Systematic Reviews》