Establishing M1 subdivision for de novo nasopharyngeal carcinoma patients receiving immuno-chemotherapy: A multicenter, retrospective cohort study.

来自 PUBMED

作者:

He SQLiu GYYu YHWang LZhang GYPeng DSBei WXChen CLLv SHZhao ZYHuang YXiang YQ

展开

摘要:

This study aims to better manage de novo metastatic nasopharyngeal carcinoma (NPC) patients receiving palliative immuno-chemotherapy (PICT), thereby easily determining individual survival outcomes. Patients with de novo metastatic NPC from four centers who received first-line PICT were included. We developed a nomogram for the pretherapy overall survival (OS) prediction using a logistic regression model in the training cohort (n = 296). We assessed the performance of this nomogram in a validation cohort. A total of 592 patients were included. The median follow-up time was 29.83 months. Bone metastasis (HR, 2.46; 95 % CI, 1.01-6.21; p = 0.049) and the number of metastatic lesions > 3 (HR, 2.78; 95 % CI, 1.24-6.24; p = 0.013) were independent prognostic indicators. A new two-category M1 subdivision was generated: M1a, defined by the absence of co-existing bone metastasis and the presence of more than three metastatic lesions; and M1b, characterized by the presence of co-existing bone metastasis and the presence of more than three metastatic lesions. The 3-year OS rates of patients with M1a vs. M1b were 87.1 % vs. 60.3 % (p < 0.001). The C-indexes were 0.652 and 0.581 in the training and validation cohorts. The 1-, 2-, and 3-year areas under the curve (AUC) were 0.69, 0.68, 0.68 in the training cohort and 0.64, 0.6, 0.6 in the validation cohort. DCA curves also indicated that the nomogram has good clinical utility. The proposed M1 subdivision provides good OS segregation for patients receiving PICT.

收起

展开

DOI:

10.1016/j.oraloncology.2024.107074

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读