-
Mitigation of allergic asthma in mice: A compound mixture comprising luteolin, arbutin, and marmesin from Gerbera Piloselloides Herba by suppression of PI3K/Akt pathway.
Gerberae Piloselloidis Herba (GPH) exhibits notable efficacy in alleviating allergic asthma. Previous studies in our research have identified a mixture of luteolin, arbutin, and marmesin as effective components of GPH in treating allergic asthma. However, the underlying mechanism remains unclear. This study aims to elucidate the molecular mechanism of these active components.
Using an ovalbumin (OVA)-induced allergic asthma mouse model, various treatment groups were administered, including GPH, the active component mixture (termed "Mixture") containing luteolin, arbutin, and marmesin, and a positive drug (dexamethasone, DEX). Relevant indices were assessed, including behavioral characteristics, inflammatory cell counts, cytokine levels, histopathological examination of lung tissue, apoptosis, and expression of key proteins such as Caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt. The effect of the Mixture on the PI3K/Akt signaling pathway was further verified using the PI3K inhibitor LY294002.
The Mixture significantly alleviated asthma symptoms, decreased IgE levels, cytokine levels (IL-4, IL-5, IL-13 and TNF-α), and the number of inflammatory cells in serum or bronchoalveolar lavage fluid (BALF), leading to the alleviation of lung pathological lesions. Additionally, the Mixture reduced the expression of Bax and Caspase-3 while increasing Bcl-2 expression, resulting in mitigated apoptosis in lung tissue. Furthermore, there appeared a decrease in the levels of PI3K and p-PI3K, as well as the ratio of p-Akt to Akt in the Mixture group, indicating the suppression of PI3K and Akt phosphorylation. Interestingly, the effects of the Mixture were comparable to those of GPH, LY294002, or the combination of LY294002 with the Mixture.
The study confirms that the Mixture containing luteolin, arbutin, and marmesin indeed alleviates allergic asthma induced by OVA in mice by suppressing the PI3K/Akt signaling pathway. These findings highlight the potential of the GPH-derived Mixture as a novel therapeutic for the treatment of allergic asthma.
Liu C
,He Y
,Zhou K
,Wang H
,Zhou M
,Sun J
,Lu Y
,Huang Y
,Wang Y
,Liu T
,Li Y
... -
《Heliyon》
-
Integrated plasma pharmacochemistry and network pharmacology to explore the mechanism of Gerberae Piloselloidis Herba in treatment of allergic asthma.
Gerberae Piloselloidis Herba (GPH), a commonly used traditional medicine in China, is derived from Gerbera piloselloides (Linn.) Cass. It is featured by its special bioactivities as antitussive, expectorant, anti-asthma, anti-bacterial, anti-tumor, uterine analgesia, and immunity-enhancing. With a long history of medication in ethnic minority areas in China, it is often used as an effective treatment for cough and sore throat as well as allergic asthma. Although our previous investigation also has discovered GPH performed effective treatment on allergic asthma, its underlying mechanism remains unclear.
This research aims to reveal the pharmacological mechanism of GPH in the treatment for allergic asthma through combination of plasma pharmacology and network pharmacology.
Firstly, the components of GPH in blood samples were identified using UHPLC- Q-Orbitrap HRMS. An interaction network of "compound-target-disease" was constructed based on the compounds confirmed in blood and on their corresponding targets of allergic asthma acquired from disease gene databases, predicting the possible biological targets and potential signal pathways of GPH with the network pharmacology analysis. Then, a molecular docking between the blood ingredients and the core targets was carried out using the Autodock Vina software. Subsequently, after establishing a mouse model with allergic asthma induced by ovalbumin (OVA), the effect of GPH on allergic asthma was evaluated by analyzing a series of indicators including behavior, lung pathological changes, inflammatory factors in serum and bronchoalveolar lavage fluid (BALF). Finally, the key pathway and targets predicted by network pharmacology and molecular docking were further verified using Western blot analysis.
Eleven chemical constituents (such as arbutin, neochlorogenic acid, chlorogenic acid, etc.) were identified through the analysis of plasma samples, on which basis a total of 142 genes intersecting GPH and allergic asthma were collected by network pharmacology. After performing enrichment analysis of these genes in gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG), it was found that arbutin-related targets mainly focused on phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signal pathway, while luteolin and marmesin -related targets tended to locate at Interleukin-17 (IL-17) signal pathway. Meanwhile, the findings of molecular docking suggested that such components as arbutin, luteolin and marmesin entering into blood had good binding with the core targets related to PI3K/Akt and IL-17 pathways. In addition, GPH improved the OVA-induced asthma symptoms, the alveolar septa thickening and the infiltration of inflammatory cell around bronchi and bronchioles as well as reduced the levels of IgE, IL-8 and TNF-α in serum or BALF. Furthermore, GPH could inhibit the phosphorylation level of Akt and the expression of PI3K, an efficacy supported by the findings by way of Western blot which suggests that GPH in the treatment of allergic asthma was linked to PI3K/Akt signal pathway.
In this study, a comprehensive strategy to combine the UPLC-Q-Orbitrap HRMS with network pharmacology was employed to clarify the mechanism of GPH against allergic asthma, a finding where GPH may inhibit PI3K/Akt signal pathway to protect mice from OVA-induced allergic asthma. This study provides a deeper understanding of the pharmacological mechanism of GPH in treatment of asthma, offering a scientific reference for further research and clinical application of GPH in terms of allergic asthma.
Zhou K
,Lu D
,You J
,Liu T
,Sun J
,Lu Y
,Pan J
,Li Y
,Liu C
... -
《-》
-
Comparative pharmacokinetics of 11 components from the active part of Gerberae Piloselloidis Herba after oral administration in control and asthmatic mice.
Gerberae Piloselloidis Herba, a traditional Chinese medicine, is often employed to treat such lung-related diseases as coughs, asthma, and pulmonary carbuncles in southwest China. Our previous study demonstrated that its active fraction, prepared from Gerberae Piloselloidis Herba, exerts an obvious beneficial effect on asthma. However, the pharmacokinetics of its major constituents remain unclear. Therefore, an ultra-performance mass spectrometry-electrospray ionization-tandem mass spectrometry method was successfully established to simultaneously perform the pharmacokinetics of the main 11 components of the active fraction between normal and ovalbumin-induced asthmatic mice. Compared to the normal group, in asthmatic mice the peak concentration of arbutin, marmesin, caffeoylquinic acids, and flavonoid glycosides clearly increased, while for luteolin it significantly declined; the area under the curve for arbutin and luteolin showed an increase, but the values of marmesin, caffeoylquinic acids, and flavonoid glycosides revealed a decline; the peak time for arbutin, caffeoylquinic acids and flavonoid glycosides decreased, while for marmesin and luteolin it significantly augmented; apart from marmesin, the half-life for all compounds shortened significantly. It is indicated that the pathology of asthma could lead to an alteration in the pharmacokinetic profiles of the 11 components in plasma, providing a reference for further exploration of the pharmacodynamic basis of the anti-bronchial effect of Gerberae Piloselloidis Herba.
Liu C
,You J
,Zhou K
,Gong Z
,Pan J
,Sun J
,Liu T
,Wang A
,Wang Y
,Lu Y
,Li Y
... -
《-》
-
Integration of metabolomics and transcriptomics to reveal the mechanism of Gerberae piloselloidis herba in alleviating bronchial asthma.
Gerberae Piloselloides Herba (GPH) is derived from Gerbera piloselloides (Linn.) Cass. It is a commonly used traditional medicine in China, featured by its special bioactivities as antitussive, expectorant, anti-asthma, anti-bacterial and anti-tumor. It is often used as an effective treatment for cough and sore throat as well as bronchial asthma (BA) in China. It was demonstrated in our previous studies that GPH exerted significant effects on the treatment of BA, but its underlying mechanism remains unclear.
This study was aimed at revealing the mechanism through which GPH protects against BA.
The protective effect of GPH against BA was evaluated in a mouse model of BA induced by ovalbumin. Through integrated metabolomics and transcriptomics analysis, the most critical pathways were discovered. The effects of GPH in regulating these pathways was verified through molecular biology experiments and molecular docking.
GPH have anti-BA effects. In plasma and lung tissue, 5 and 17 differentially expressed metabolites (DEMs), respectively, showed a reversed tendency in the GPH group compared with the model group; apart from gamma-aminobutyric acid and butyrylcarnitine, these DEMs might aid in BA diagnosis. The DEMs were involved primarily in the regulation of lipid metabolism, followed by glucose metabolism and amino acid metabolism. Transcriptomic analysis indicated that GPH modulated 268 differentially expressed genes (DEGs). Integration analysis of metabolomics and transcriptomics revealed that GPH might regulate the PPAR signaling pathway, thus affecting the expression of key gene targets such as Cyp4a12a, Cyp4a12b, Adh7, Acaa1b and Gpat2; controlling fatty acid degradation, unsaturated fatty acid biosynthesis, glycerophospholipid metabolism and other lipid metabolic pathways; and ameliorating BA. This possibility was confirmed through reverse-transcription quantitative polymerase chain reaction, western blotting, immunofluorescence and molecular docking.
GPH was found to activate the PPAR signaling pathway, decrease the levels of Cyp4a12a and Cyp4a12b, and increase the levels of Adh7, Acaa1b and Gpat2, thereby regulating lipid metabolism disorder, decreasing the generation of inflammatory mediators and limiting lung injury.
Liu C
,Fu C
,Lu Y
,Sun J
,Liu T
,Wang Y
,Wang A
,Huang Y
,Li Y
... -
《-》
-
Luteolin inhibits autophagy in allergic asthma by activating PI3K/Akt/mTOR signaling and inhibiting Beclin-1-PI3KC3 complex.
Allergic asthma is a common chronic inflammatory disease characterized by airway inflammation, mucus hypersecretion and airway remodeling. Autophagy is a highly conserved intracellular degradation pathway in eukaryotic cells. There is growing evidence suggesting that dysregulation of autophagy is involved in the pathological process of asthma. Luteolin is a typical flavonoid compound with anti-inflammatory, anti-allergic and immune-enhancing functions. Previous studies have shown that luteolin can attenuate airway inflammation and hypersensitivity in asthma. However, whether luteolin can play a role in treating asthma by regulating autophagy remains unclear. The aim of the present study was to evaluate the therapeutic effect of luteolin on ovalbumin (OVA)-induced asthmatic mice, observe its effect on the level of autophagy in lung tissues, and further elucidate its underlying mechanism. The results showed that OVA-induced mice developed airway hyperresponsiveness, mucus over-production and collagen deposition. The number of inflammatory cells, levels of interleukin (IL)-4, IL-5 and IL-13 in bronchoalveolar lavage fluid (BALF) and OVA-specific IgE in serum were significantly increased. Furthermore, the infiltration of inflammatory cells was observed along with the activation of autophagy in lung tissues. Luteolin treatment significantly inhibited the OVA-induced inflammatory responses and the level of autophagy in lung tissues as well. Moreover, luteolin activated the PI3K/Akt/mTOR pathway and inhibited the Beclin-1-PI3KC3 protein complex in lung tissues of asthmatic mice. In conclusion, this study explored the regulatory mechanism of luteolin on autophagy in allergic asthma, providing biologic evidence for its clinical application.
Wang S
,Wuniqiemu T
,Tang W
,Teng F
,Bian Q
,Yi L
,Qin J
,Zhu X
,Wei Y
,Dong J
... -
《-》