Optimization of the Irf8 +32-kb enhancer disrupts dendritic cell lineage segregation.
摘要:
Autoactivation of lineage-determining transcription factors mediates bistable expression, generating distinct cell phenotypes essential for complex body plans. Classical type 1 dendritic cell (cDC1) and type 2 dendritic cell (cDC2) subsets provide nonredundant functions for defense against distinct immune challenges. Interferon regulatory factor 8 (IRF8), the cDC1 lineage-determining transcription factor, undergoes autoactivation in cDC1 progenitors to establish cDC1 identity, yet its expression is downregulated during cDC2 differentiation by an unknown mechanism. This study reveals that the Irf8 +32-kb enhancer, responsible for IRF8 autoactivation, is naturally suboptimized with low-affinity IRF8 binding sites. Introducing multiple high-affinity IRF8 sites into the Irf8 +32-kb enhancer causes a gain-of-function effect, leading to erroneous IRF8 autoactivation in specified cDC2 progenitors, redirecting them toward cDC1 and a novel hybrid DC subset with mixed-lineage phenotypes. Further, this also causes a loss-of-function effect, reducing Irf8 expression in cDC1s. These developmental alterations critically impair both cDC1-dependent and cDC2-dependent arms of immunity. Collectively, our findings underscore the significance of enhancer suboptimization in the developmental segregation of cDCs required for normal immune function.
收起
展开
DOI:
10.1038/s41590-024-01976-w
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(66)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无