Discovery of dual-targeted molecules based on Olaparib and Rigosertib for triple-negative breast cancer with wild-type BRCA.

来自 PUBMED

作者:

Liu ZMao SDai LHuang RHu WYu CYang YCao GHuang X

展开

摘要:

PARP inhibitors (PARPis) demonstrate significant potential efficacy in the clinical treatment of BRCA-mutated triple-negative breast cancer (TNBC). However, a majority of patients with TNBC do not possess BRCA mutations, and therefore cannot benefit from PARPis. Previous studies on multi-targeted molecules derived from PARPis or disruptors of RAF-RAF pathway have offered an alternative approach to develop novel anti-TNBC agents. Hence, to broaden the application of PARP inhibitors for TNBC patients with wild-type BRCA, a series of dual-targeted molecules were constructed via integrating the key pharmacophores of Olaparib (Ola) and Rigosertib into a single entity. Subsequent studies exhibited that the resulting compounds 13a-14c obtained potential anti-proliferative activity against BRCA-defected or wild-type TNBC cells. Among them, an optimal compound 13b showed good inhibitory activity toward PARP-1, displayed approximately 34-fold higher inhibitory activity than that of Ola in MDA-MB-231 cells, and exerted multi-functional mechanisms to induce apoptosis. Moreover, 13b displayed superior antitumor efficacy (TGI, 61.3 %) than the single administration of Ola (TGI, 38.5 %), 11b (TGI, 51.8 %) or even their combined administration (TGI, 56.7 %), but did not show significant systematic toxicity. These findings suggest that 13b may serve as a potential candidate for BRCA wild-type TNBC.

收起

展开

DOI:

10.1016/j.bmc.2024.117936

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(102)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读