-
Caffeoylquinic acids from Silphium perfoliatum L. show hepatoprotective effects on cholestatic mice by regulating enterohepatic circulation of bile acids.
The incidence of cholestatic liver disease (CLD), which is primarily marked by abnormal bile acids (BAs) metabolism and can result in significant hepatic injury, is rising. Nevertheless, there remains a lack of effective treatments and drugs in clinical practice. Silphium perfoliatum L. (SP) is rich in various structural types of caffeoylquinic acid (CQA) compounds, and it is a traditional herb of North American Indians with hepatobiliary therapy effects. However, its therapeutic effect and mechanism of action on CLD have never been studied.
To determine if SP-8, an extract rich in CQAs from SP, protects against cholestatic liver injury induced by alpha-naphthylisothiocyanate (ANIT) and to clarify its mechanism based on the farnesoid x receptor (FXR) signaling pathway and enterohepatic circulation of BAs.
The therapeutic efficacy of SP-8 was evaluated by assessing the serum biochemical indices, inflammatory factors, and liver histopathology. Targeted metabolomics of the BAs was studied in the feces, liver, serum, and bile using UPLC-MS/MS. Additionally, a Western blot analysis was used to examine the expression levels of the peroxisome proliferator-activated receptor γ (PPARγ), the FXR, and proteins related to the synthesis and transport of BAs. 16S rRNA gene sequencing was performed to evaluate the gut microbiota (GM). Finally, molecular docking simulations were conducted to assess the interaction between seven types of CQAs from SP-8 with FXR and PPARγ.
SP-8 significantly enhanced the health status of cholestatic mice induced by ANIT as evidenced by a notable reduction in the liver function indices and pro-inflammatory factors, restoration of liver pathological damage, and acceleration of BAs excretion through the feces. In addition, the levels of harmful secondary BAs in the liver and blood were significantly reduced by SP-8. Furthermore, the results of the study on the mechanism of action confirmed that SP-8 not only regulated FXR and PPARγ but also significantly ameliorated the GM structure, thereby promoting the enterohepatic circulation of BAs and achieving the homeostasis of the BAs in the blood and liver. In addition, SP-8 successfully reduced the inflammatory response by strongly suppressing the nuclear translocation of NF-κBp65. According to the molecular docking results, the extract's primary active ingredients could be the seven CQAs in SP-8, as they exhibited a strong affinity for both FXR and PPARγ. Finally, the Mantel test analysis revealed a significant correlation among cholestatic-associated parameters, the GM, and BAs.
It was confirmed for the first time that the SP-8 extract of Silphium perfoliatum L. that is rich in seven CQAs had a strong therapeutic effect on ANIT-induced CLD. Its mechanism may involve the regulation of the FXR signaling pathway and the amelioration of the GM structure to promote the homeostasis of BAs enterohepatic circulation. This study provides a potential candidate medicinal herb and its components for the development of CLD therapeutic drugs.
Zhang G
,Jia W
,Liu L
,Wang L
,Xu J
,Tao J
,Xu M
,Yue M
,Luo H
,Hai P
,Yue H
,Zhang D
,Zhao X
... -
《-》
-
Desmodium styracifolium (Osb.) Merr. Extracts alleviate cholestatic liver disease by FXR pathway.
Cholestatic liver disease (CLD) is a disease characterized by cholestasis. Farnesoid X receptor (FXR) is a nuclear receptor that maintains homeostasis in bile acid metabolism. Studies have shown that gut microbiota interfered with the FXR pathway. Modulation of FXR to inhibit cholestasis has become a key measure in the treatment of CLD. In traditional folk medicine, Desmodium styracifolium (Osb.) Merr. was used as a primary treatment for gallstones, gonorrhea, jaundice, cholecystitis and other diseases. Modern pharmacological studies had also found that the herb has anti-calculus, anti-inflammatory, antioxidant, diuretic and liver damage. Therefore, we speculated that Desmodium styracifolium (Osb.) Merr. extracts (DME) could alleviate CLD through the FXR pathway and might be associated with the gut microbiota. However, studies of DME alleviating CLD through the FXR pathway have not been reported.
To study the effect and mechanism of DME in relieving CLD through in vivo and in vitro experiments.
First, mice were administrated with alpha-naphthyl isothiocyanate (ANIT) to establish a CLD model in vivo. Meanwhile, HepG2 cells were induced by lithocholic acid (LCA) to establish the CLD model in vitro. To evaluate the therapeutic effect of DME on CLD mice, hematoxylin-eosin (HE) staining, and biochemical indicators were performed. The prototype of the blood components in mice serum was detected by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). 16S rDNA sequencing was used to analyze the gut microbiota. Finally, the protein and mRNA expression of the FXR pathway in mice liver tissues or HepG2 cells were detected by Western blot, qRT-PCR, or immunofluorescence.
Pathological testing and biochemical indexes showed that DME significantly reduced serum ALT, AST, ALP, TBIL, DBIL, TBA and liver TBA levels, and attenuated liver tissue injury, necrosis and jaundice in CLD mice. In addition, MetagenomeSeq analysis of gut microbiota showed that DME significantly up-regulated the abundance of Parvibacter, down-regulated the abundance of Paenalcaligenes, and regulated bile acid homeostasis. In terms of mRNA expression, DME significantly upregulated the mRNA levels of Nr1h4, Abcb11, Cyp7a1 and Slc10a1. Meanwhile, in terms of protein expression, DME significantly up-regulated the protein expression levels of FXR, BSEP, CYP7A1 and NTCP, which regulated bile acid homeostasis. Finally, the molecular docking results showed that the components of DME, such as Lumichrome, Daidzein and Folic acid, all had good binding ability with FXR, and the surface plasmon resonance (SPR) results also showed that both Lumichrome and Daidzein had a relatively high affinity with FXR.
DME alleviated CLD through the FXR pathway, and the mechanisms might be associated with the gut microbiota.
Zhang Z
,Guan G
,Tang Z
,Wan W
,Huang Z
,Wang Y
,Wu J
,Li B
,Zhong M
,Zhang K
,Nong L
,Gao Y
,Cao H
... -
《-》
-
Network pharmacology-based mechanism prediction and pharmacological validation of Xiaoyan Lidan formula on attenuating alpha-naphthylisothiocyanate induced cholestatic hepatic injury in rats.
The well-known Chinese prescription, Xiaoyan Lidan Formula (XYLDF), possesses efficiency of heat-clearing, dampness-eliminating and jaundice-removing. It has long been used clinically for the treatment of hepatobiliary diseases due to intrahepatic cholestasis (IHC). However, the mechanism of XYLDF for its therapeutic effects remains elusive.
The study aimed to explore the potential targets for liver protective mechanism of XYLDF based on network pharmacology and experimental assays in ANIT-induced cholestatic hepatic injury (CHI) in rats.
On the basis of the 29 serum migrant compounds of XYLDF elucidated by UPLC-TOF-MS/MS, a network pharmacology approach was applied for the mechanism prediction. Systematic networks were constructed to identify potential molecular targets, biological processes, and signaling pathways. And the interactions between significantly potential targets and active compounds were simulated by molecular docking. For the mechanism validation, an ANIT-induced rat model was used to evaluate the effects of XYLDF on CHI according to serum biochemistry, bile flow rates, histopathological examination, and the gene and protein expression including enzymes related to synthesis, export, and import of bile acid in liver and ileum, and those of inflammatory cytokines, analyzed by RT-qPCR and WB.
The results of network pharmacology research indicated TNF (TNF-α), RELA (NF-κB), NR1H4 (FXR), and ICAM1 (ICAM-1) to be the important potential targets of XYLDF for cholestatic liver injury, which are related to bile metabolism and NF-κB-mediated inflammatory signaling. And the molecular docking had pre-validated the prediction of network pharmacology, as the core active compounds of XYLDF had shown strong simulation binding affinity with FXR, followed by NF-κB, TNF-α, and ICAM-1. Meanwhile, the effects of XYLDF after oral administration on ANIT-induced CHI in rats exhibited the decreased levels of transaminases (ALT and AST), TBA, and TBIL in serum, raised bile flow rates, and markedly improved hepatic histopathology. Furthermore, consistent to the above targets prediction and molecular docking, XYLDF significantly up-regulated the expression of FXR, SHP, BSEP, and MRP2, and down-regulated CYP7A1 and NTCP in liver, and promoted expression of IBABP and OSTα/β in ileum, suggesting the activation of FXR-mediated pathway referring to bile acid synthesis, transportation, and reabsorption. Moreover, the lower levels of TNF-α in plasma and liver, as well as the reduced hepatic gene and protein expression of NF-κB, TNF-α, and ICAM-1 after XYLDF treatment revealed the suppression of NF-κB-mediated inflammatory signaling pathway, as evidenced by the inhibition of nuclear translocation of NF-κB.
XYLDF exhibited an ameliorative liver protective effect on ANIT-induced cholestatic hepatic injury. The present study has confirmed its mechanism as activating the FXR-regulated bile acid pathway and inhibiting inflammation via the NF-κB signaling pathway.
Wang M
,Liu F
,Yao Y
,Zhang Q
,Lu Z
,Zhang R
,Liu C
,Lin C
,Zhu C
... -
《-》
-
Gardenia extract protects against intrahepatic cholestasis by regulating bile acid enterohepatic circulation.
Cholestasis is the main manifestation of cholestatic liver disease, which has a risk of progression to end-stage liver disease. Gardeniae Fructus is the dried fruit of Gardeniae jasminoides Ellis, a plant of the Rubiaceae family. Gardeniae Fructus has shown therapeutic potential in cholestasis-related liver diseases and it is generally believed that Gardeniae Fructus ameliorates cholestasis, which could be related to its influence on bile acids (BAs) metabolism. However, the specific targets of Gardeniae Fructus and its impact on enterohepatic circulation of BAs have not yet been fully elucidated.
To systematically elucidate the mechanism by which Gardenia extract (GE, total iridoids in Gardeniae Fructus, which contains the predominant and characteristic phytoconstituents of Gardeniae Fructus) ameliorates alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury.
Sprague-Dawley rats were orally administered water, obeticholic acid (OCA, 2 mg/kg), or GE (21 and 42 mg/kg) once daily for five days. On the third day, the model was established by administration of a single dose of ANIT (40 mg/kg) by oral gavage. Biochemical and pathological analyses, BA metabolomics, transcriptomics, and qRT-PCR were performed.
The profile of BAs in serum and liver confirmed that GE attenuated ANIT-induced acute cholestasis by affecting BA metabolism in a dose-dependent manner. Liver transcriptomic analysis indicated that GE mainly influenced the primary bile acid (PBA) biosynthesis and bile secretion pathways. GE mainly affected PBA biosynthesis in liver by upregulating Cyp8b1 gene expression, thereby significantly reducing the level of total bile acids (TBA). GE mainly promoted PBA excretion from liver into duodenum by upregulating Fxr and Oatp1 gene expression, thereby increasing the excretion of PBA in feces, and inhibiting PBA in liver entering the blood by alternative routes to reduce TBA levels in serum and urine and improve the enterohepatic circulation of BAs.
GE attenuated ANIT-induced hepatotoxicity and cholestasis in rats by upregulating Cyp8b1 expression to inhibit BA synthesis in the liver, while also promoting BA excretion via the intestinal-fecal route, and improving enterohepatic circulation of BAs.
Qin S
,Tian J
,Zhao Y
,Wang L
,Wang J
,Liu S
,Meng J
,Wang F
,Liu C
,Han J
,Pan C
,Zhang Y
,Yi Y
,Li C
,Liu M
,Liang A
... -
《-》
-
JiaGaSongTang improves chronic cholestasis via enhancing FXR-mediated bile acid metabolism.
Bile acid (BA) enterohepatic circulation disorders are a main feature of chronic cholestatic diseases. Promoting BA metabolism is thus a potential method of improving enterohepatic circulation disorders, and treat enterohepatic inflammation, oxidative stress and fibrosis due to cholestasis.
To investigate the effect of JiaGaSongTang (JGST) and its blood-absorbed ingredient 6-gingerol on α-naphthylisothiocyanate (ANIT)-induced chronic cholestasis, as well as elucidate the underlying regulatory mechanism.
Chronic cholestasis was induced in mice via subcutaneous injection of ANIT (50 mg/kg) every other day for 14 d. Treatment groups were administered JGST orally daily. Damage to the liver and intestine was observed using histopathological techniques. Biochemical techniques were employed to assess total BA (TBA) levels in the serum, liver, and ileum samples. Liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze fecal BA components. Bioinformatic methods were adopted to screen the core targets and pathways. The blood-absorbed ingredients of JGST were scrutinized via LC-MS/MS. The effects of the major JGST ingredients on farnesoid X receptor (FXR) transactivation were validated using dual luciferase reporter genes. Lastly, the effects of the FXR inhibitor, DY268, on JGST and 6-gingerol pharmacodynamics were observed at the cellular and animal levels.
JGST ameliorated pathological impairments in the liver and intestine, diminishing TBA levels in the serum, liver and gut. Fecal BA profiling revealed that JGST enhanced the excretion of toxic BA constituents, including deoxycholic acid. Bioinformatic analyses indicated that JGST engaged in anti-inflammatory mechanisms, attenuating collagen accumulation, and orchestrating BA metabolism via interactions with FXR and other pertinent targets. LC-MS/MS analysis identified six ingredients absorbed to the bloodstream, including 6-gingerol. Surface plasmon resonance (SPR) and dual luciferase reporter gene assays confirmed the abilities of 6-gingerol to bind to FXR and activate its transactivation. Ultimately, in both cellular and animal models, the therapeutic efficacy of JGST and 6-gingerol in chronic cholestasis was attenuated in the presence of FXR inhibitors.
The findings, for the first time, demonstrated that 6-gingerol, a blood-absorbed ingredient of JGST, can activate FXR to affect BA metabolism, and thereby attenuate ANIT-induced liver and intestinal injury in chronic cholestasis mice model via inhibition of inflammation, oxidative stress, and liver fibrosis, in part in a FXR-dependent mechanism.
He X
,Zhou Y
,Yu J
,Huang Q
,Chen Z
,Xiao R
,Liu C
,Gui S
,Xiong T
... -
《-》