Galileo-an Artificial Intelligence tool for evaluating pre-implantation kidney biopsies.

来自 PUBMED

摘要:

Pre-transplant procurement biopsy interpretation is challenging, also because of the low number of renal pathology experts. Artificial intelligence (AI) can assist by aiding pathologists with kidney donor biopsy assessment. Herein we present the "Galileo" AI tool, designed specifically to assist the on-call pathologist with interpreting pre-implantation kidney biopsies. A multicenter cohort of whole slide images acquired from core-needle and wedge biopsies of the kidney was collected. A deep learning algorithm was trained to detect the main findings evaluated in the pre-implantation setting (normal glomeruli, globally sclerosed glomeruli, ischemic glomeruli, arterioles and arteries). The model obtained on the Aiforia Create platform was validated on an external dataset by three independent pathologists to evaluate the performance of the algorithm. Galileo demonstrated a precision, sensitivity, F1 score and total area error of 81.96%, 94.39%, 87.74%, 2.81% and 74.05%, 71.03%, 72.5%, 2% in the training and validation sets, respectively. Galileo was significantly faster than pathologists, requiring 2 min overall in the validation phase (vs 25, 22 and 31 min by 3 separate human readers, p < 0.001). Galileo-assisted detection of renal structures and quantitative information was directly integrated in the final report. The Galileo AI-assisted tool shows promise in speeding up pre-implantation kidney biopsy interpretation, as well as in reducing inter-observer variability. This tool may represent a starting point for further improvements based on hard endpoints such as graft survival.

收起

展开

DOI:

10.1007/s40620-024-02094-4

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(96)

参考文献(26)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读