Predicting muscle invasion in bladder cancer based on MRI: A comparison of radiomics, and single-task and multi-task deep learning.
Radiomics and deep learning are two popular technologies used to develop computer-aided detection and diagnosis schemes for analysing medical images. This study aimed to compare the effectiveness of radiomics, single-task deep learning (DL) and multi-task DL methods in predicting muscle-invasive bladder cancer (MIBC) status based on T2-weighted imaging (T2WI).
A total of 121 tumours (93 for training, from Centre 1; 28 for testing, from Centre 2) were included. MIBC was confirmed with pathological examination. A radiomics model, a single-task model, and a multi-task model based on T2WI were constructed in the training cohort with five-fold cross-validation, and validation was conducted in the external test cohort. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of each model. DeLong's test and a permutation test were used to compare the performance of the models.
The area under the ROC curve (AUC) values of the radiomics, single-task and multi-task models in the training cohort were: 0.920, 0.933 and 0.932, respectively; and were 0.844, 0.884 and 0.932, respectively, in the test cohort. The multi-task model achieved better performance in the test cohort than did the other models. No statistically significant differences in AUC values and Kappa coefficients were observed between pairwise models, in either the training or test cohorts. According to the Grad-CAM feature visualization results, the multi-task model focused more on the diseased tissue area in some samples of the test cohort compared with the single-task model.
The T2WI-based radiomics, single-task, and multi-task models all exhibited good diagnostic performance in preoperatively predicting MIBC, in which the multi-task model had the best diagnostic performance. Compared with the radiomics method, our multi-task DL method had the advantage of saving time and effort. Compared with the single-task DL method, our multi-task DL method had the advantage of being more lesion-focused and more reliable for clinical reference.
Li J
,Qiu Z
,Cao K
,Deng L
,Zhang W
,Xie C
,Yang S
,Yue P
,Zhong J
,Lyu J
,Huang X
,Zhang K
,Zou Y
,Huang B
... -
《-》
Predicting HER2 Status in Breast Cancer on Ultrasound Images Using Deep Learning Method.
The expression of human epidermal growth factor receptor 2 (HER2) in breast cancer is critical in the treatment with targeted therapy. A 3-block-DenseNet-based deep learning model was developed to predict the expression of HER2 in breast cancer by ultrasound images.
The data from 144 breast cancer patients with preoperative ultrasound images and clinical information were retrospectively collected from the Shandong Province Tumor Hospital. An end-to-end 3-block-DenseNet deep learning classifier was built to predict the expression of human epidermal growth factor receptor 2 by ultrasound images. The patients were randomly divided into a training (n = 108) and a validation set (n = 36).
Our proposed deep learning model achieved an encouraging predictive performance in the training set (accuracy = 85.79%, AUC = 0.87) and the validation set (accuracy = 80.56%, AUC = 0.84). The effectiveness of our model significantly exceeded the clinical model and the radiomics model. The score of the proposed model showed significant differences between HER2-positive and -negative expression (p < 0.001).
These results demonstrate that ultrasound images are predictive of HER2 expression through a deep learning classifier. Our method provides a non-invasive, simple, and feasible method for the prediction of HER2 expression without the manual delineation of the regions of interest (ROI). The performance of our deep learning model significantly exceeded the traditional texture analysis based on the radiomics model.
Xu Z
,Yang Q
,Li M
,Gu J
,Du C
,Chen Y
,Li B
... -
《-》
Ultrasound deep learning radiomics and clinical machine learning models to predict low nuclear grade, ER, PR, and HER2 receptor status in pure ductal carcinoma in situ.
Low nuclear grade ductal carcinoma in situ (DCIS) patients can adopt proactive management strategies to avoid unnecessary surgical resection. Different personalized treatment modalities may be selected based on the expression status of molecular markers, which is also predictive of different outcomes and risks of recurrence. DCIS ultrasound findings are mostly non mass lesions, making it difficult to determine boundaries. Currently, studies have shown that models based on deep learning radiomics (DLR) have advantages in automatic recognition of tumor contours. Machine learning models based on clinical imaging features can explain the importance of imaging features.
The available ultrasound data of 349 patients with pure DCIS confirmed by surgical pathology [54 low nuclear grade, 175 positive estrogen receptor (ER+), 163 positive progesterone receptor (PR+), and 81 positive human epidermal growth factor receptor 2 (HER2+)] were collected. Radiologists extracted ultrasonographic features of DCIS lesions based on the 5th Edition of Breast Imaging Reporting and Data System (BI-RADS). Patient age and BI-RADS characteristics were used to construct clinical machine learning (CML) models. The RadImageNet pretrained network was used for extracting radiomics features and as an input for DLR modeling. For training and validation datasets, 80% and 20% of the data, respectively, were used. Logistic regression (LR), support vector machine (SVM), random forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms were performed and compared for the final classification modeling. Each task used the area under the receiver operating characteristic curve (AUC) to evaluate the effectiveness of DLR and CML models.
In the training dataset, low nuclear grade, ER+, PR+, and HER2+ DCIS lesions accounted for 19.20%, 65.12%, 61.21%, and 30.19%, respectively; the validation set, they consisted of 19.30%, 62.50%, 57.14%, and 30.91%, respectively. In the DLR models we developed, the best AUC values for identifying features were 0.633 for identifying low nuclear grade, completed by the XGBoost Classifier of ResNet50; 0.618 for identifying ER, completed by the RF Classifier of InceptionV3; 0.755 for identifying PR, completed by the XGBoost Classifier of InceptionV3; and 0.713 for identifying HER2, completed by the LR Classifier of ResNet50. The CML models had better performance than DLR in predicting low nuclear grade, ER+, PR+, and HER2+ DCIS lesions. The best AUC values by classification were as follows: for low nuclear grade by RF classification, AUC: 0.719; for ER+ by XGBoost classification, AUC: 0.761; for PR+ by XGBoost classification, AUC: 0.780; and for HER2+ by RF classification, AUC: 0.723.
Based on small-scale datasets, our study showed that the DLR models developed using RadImageNet pretrained network and CML models may help predict low nuclear grade, ER+, PR+, and HER2+ DCIS lesions so that patients benefit from hierarchical and personalized treatment.
Zhu M
,Kuang Y
,Jiang Z
,Liu J
,Zhang H
,Zhao H
,Luo H
,Chen Y
,Peng Y
... -
《-》