A Mendelian randomization study investigating the causal relationships between inflammation and immunoglobulin A nephropathy.
Immunoglobulin A nephropathy (IgAN) is an autoimmune disease characterized by the production of galactose‑deficient IgA1 (Gd‑IgA1) and the deposition of immune complexes in the kidney. Exploring the landscape of immune dysregulation in IgAN is valuable for pathogenesis and disease treatment. We conducted Mendelian randomization (MR) to assess the causal correlations between inflammation and IgAN.
Based on available genetic datasets, we investigated potential causal links between inflammation and the risk of IgAN using two-sample MR. We used genome-wide association study (GWAS) summary statistics of 5 typical inflammation markers, 41 inflammatory cytokines, and 731 immune cell signatures, accessed from the public GWAS Catalog. The primary method employed for MR analysis was Inverse Variance Weighted (IVW). To confirm consistency across results, four supplementary MR methods were also conducted: MR-Egger, Weighted Median, Weighted Mode, and Simple Mode. To assess pleiotropy, we used the MR-Egger regression intercept test and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test. Cochrane's Q statistic was applied to evaluate heterogeneity. Additionally, the stability of the MR findings was verified through the leave-one-out sensitivity analysis.
This study revealed that interleukin-7 (IL-7) and stem cell growth factor beta (SCGF-β) were possibly associated with the risk of IgAN according to the IVW approach, with estimated odds ratios (OR) of 1.059 (95 % confidence interval [CI] 1.015 to 1.104, P = 0.008) and 1.043 (95 % CI 1.002 to 1.085, P = 0.037). Five immune traits were identified that might be linked to IgAN risk, each with P-values below 0.01, including natural killer T %T cell (OR = 1.058, 95 % CI: 1.020 to 1.097, P = 0.002), natural killer T %lymphocyte (OR = 1.055, 95 % CI: 1.016 to 1.096, P = 0.006), CD25++ CD8+ T cell %T cell (OR = 1.057, 95 % CI: 1.016 to 1.099, P = 0.006), CD3 on effector memory CD4+ T cell (OR = 1.045, 95 % CI: 1.019 to 1.071, P = 0.001), and CD3 on CD28+ CD45RA+ CD8+ T cell (OR = 1.042, 95 % CI: 1.016 to 1.068, P = 0.001). CD4 on central memory CD4+ T cell might be a protective factor for IgAN (OR = 0.922, 95 % CI: 0.875 to 0.971, P = 0.002). Moreover, IgAN may be implicated in a high risk of elevated granulocyte colony-stimulating factor (G-CSF) (OR = 1.114, 95 % CI 1.002 to 1.239, P = 0.046).
Our study revealed exposures among typical inflammation markers, inflammatory cytokines, and immune cell signatures that may potentially linked to IgAN risk by MR analysis. This insight may advance our understanding of the etiology of IgAN and support the development of targeted therapeutic strategies.
Ren Y
,Zhang H
《-》
Causality of immune cells on primary sclerosing cholangitis: a bidirectional two-sample Mendelian randomization study.
Observational studies have indicated that immune dysregulation in primary sclerosing cholangitis (PSC) primarily involves intestinal-derived immune cells. However, the causal relationship between peripheral blood immune cells and PSC remains insufficiently understood.
A bidirectional two-sample Mendelian randomization (MR) analysis was implemented to determine the causal effect between PBC and 731 immune cells. All datasets were extracted from a publicly available genetic database. The standard inverse variance weighted (IVW) method was selected as the main method for the causality analysis. Cochran's Q statistics and MR-Egger intercept were performed to evaluate heterogeneity and pleiotropy.
In forward MR analysis, the expression ratios of CD11c on CD62L+ myeloid DC (OR = 1.136, 95% CI = 1.032-1.250, p = 0.009) and CD62L-myeloid DC AC (OR = 1.267, 95% CI = 1.086-1.477, p = 0.003) were correlated with a higher risk of PSC. Each one standard deviation increase of CD28 on resting regulatory T cells (Treg) (OR = 0.724, 95% CI = 0.630-0.833, p < 0.001) and CD3 on secreting Treg (OR = 0.893, 95% CI = 0.823-0.969, p = 0.007) negatively associated with the risk of PSC. In reverse MR analysis, PSC was identified with a genetic causal effect on EM CD8+ T cell AC, CD8+ T cell AC, CD28- CD127- CD25++ CD8+ T cell AC, CD28- CD25++ CD8+ T cell AC, CD28- CD8+ T cell/CD8+ T cell, CD28- CD8+ T cell AC, and CD45 RA- CD28- CD8+ T cell AC.
Our study indicated the evidence of causal effects between PSC and immune cells, which may provide a potential foundation for future diagnosis and treatment of PSC.
Wu P
,Xie S
,Cai Y
,Liu H
,Lv Y
,Yang Y
,He Y
,Yin B
,Lan T
,Wu H
... -
《Frontiers in Immunology》
[Genetic Causation Analysis of Hyperandrogenemia Testing Indicators and Preeclampsia].
Some epidemiological studies have shown that pregnant women who develop preeclampsia (PE) have elevated levels of testosterone in their maternal plasma compared to women with normal blood pressure during pregnancy, revealing a potential association between hyperandrogenism in women and PE. To explore the causal relationship between hyperandrogenism and PE, this study selected total testosterone (TT), bioavailable testosterone (BIOT), and sex hormone binding globulin (SHBG) as exposure factors and PE and chronic hypertension with superimposed PE as disease outcomes. Two-sample Mendelian randomization (MR) analyses were used to genetically dissect the causal relationships between the three exposure factors (TT, BIOT, and SHBG) and the outcomes of PE and chronic hypertension with superimposed PE.
Two independent genome-wide association study (GWAS) databases were used for the two-sample MR analysis. In the GWAS data of female participants from the UK Biobank cohort, single nucleotide polymorphisms (SNPs) associated with TT, BIOT, and SHBG were analyzed, involving 230454, 188507, and 188908 samples, respectively. GWAS data on PE and chronic hypertension with superimposed PE from the Finnish database were used to calculate SNP, involving 3556 PE cases and 114735 controls, as well as 38 cases of chronic hypertension with superimposed PE and 114735 controls. To meet the assumptions of instrumental relevance and independence in MR analysis, SNPs associated with exposure were identified at the genome-wide level (P<5.0×10-8), and those in linkage disequilibrium interference were excluded based on clustering thresholds of R 2<0.001 and an allele distance greater than 10000 kb. Known confounding factors, including previous PE, chronic kidney disease, chronic hypertension, diabetes, systemic lupus erythematosus, or antiphospholipid syndrome, were also identified and the relevant SNPs were removed. Finally, we extracted the outcome data based on the exposure-related SNPs in the outcome GWAS, integrating exposure and outcome data, and removing palindromic sequences. Five genetic causal analysis methods, including inverse variance-weighted method (IVW), MR-Egger regression, weighted median method, simple mode method, and weighted mode method, were used to infer causal relationships. In the IVW, it was assumed that the selected SNPs satisfied the three assumptions and provided the most ideal estimate of the effect. IVW was consequently used as the primary analysis method in this study. Considering the potential heterogeneity among the instrumental variables, random-effects IVW was used for MR analysis. The results were interpreted using odds ratios (OR) and the corresponding 95% confidence interval (CI) to explain the impact of exposure factors on PE and chronic hypertension with superimposed PE. If the CI did not include 1 and had a P value less than 0.05, the difference was considered statistically significant. Sensitivity analysis was conducted to assess heterogeneity and pleiotropy. Heterogeneity was examined using Cochran's Q test, and pleiotropy was assessed using MR-Egger intercept analysis. Additionally, leave-one-out analysis was conducted to examine whether individual SNPs were driving the causal associations. To further validate the findings, MR analyses were performed using the same methods and outcome variables, but with different exposure factors, including waist-to-hip ratio adjusted for BMI (WHRadjBMI) and 25-hydroxyvitamin D levels, with MR results for WHRadjBMI and PE serving as the positive controls and MR results for 25-hydroxyvitamin D levels and PE as the negative controls.
According to the criteria for selecting genetic instrumental variables, 186, 127, and 262 SNPs were identified as genetic instrumental variables significantly associated with testosterone indicators TT, BIOT, and SHBG. MR analysis did not find a causal relationship between the TT, BIOT, and SHBG levels and the risk of developing PE and chronic hypertension with superimposed PE. The IVW method predicted that genetically predicted TT (OR [95% CI]=1.018 [0.897-1.156], P=0.78), BIOT (OR [95% CI]=1.11 [0.874-1.408], P=0.392), and SHBG (OR [95% CI]=0.855 [0.659-1.109], P=0.239) were not associated with PE. Similarly, genetically predicted TT (OR [95% CI]=1.222 [0.548-2.722], P=0.624), BIOT (OR [95% CI]=1.066 [0.242-4.695], P=0.933), and SHBG (OR [95% CI]=0.529 [0.119-2.343], P=0.402) were not significantly associated with chronic hypertension with superimposed PE. Additionally, MR analysis using the MR-Egger method, weighted median method, simple mode method, and weighted mode method yielded consistent results, indicating no significant causal relationship between elevated testosterone levels and PE or chronic hypertension with superimposed PE. Heterogeneity was observed for SHBG in the analysis with PE (Cochran's Q test, P=0.01), and pleiotropy was detected for BIOT in the analysis with PE (MR-Egger intercept analysis, P=0.014), suggesting that the instrumental variables did not affect PE through BIOT. Other instrumental variables did not show significant heterogeneity or pleiotropy. Leave-one-out analysis confirmed that the results of the MR analysis were not driven by individual instrumental variables. Consistent with previous MR studies, the results of the control MR analyses using WHRadjBMI and 25-hydroxyvitamin D levels supported the accuracy of the MR analysis approach and the methods used in this study.
The MR analysis results suggest that current genetic evidence does not support a causal relationship between TT, BIOT, and SHBG levels and the development of PE and chronic hypertension with superimposed PE. This study suggests that elevated testosterone may be a risk factor for PE but not a direct cause.
Lin C
,Chen J
,Zhao X
《-》
Genetically predicted N-methylhydroxyproline levels mediate the association between naive CD8+ T cells and allergic rhinitis: a mediation Mendelian randomization study.
Allergic rhinitis (AR), a prevalent chronic inflammatory condition triggered by immunoglobulin E (IgE), involves pivotal roles of immune and metabolic factors in its onset and progression. However, the intricacies and uncertainties in clinical research render current investigations into their interplay somewhat inadequate.
To elucidate the causal relationships between immune cells, metabolites, and AR, we conducted a mediation Mendelian randomization (MR) analysis.
Leveraging comprehensive publicly accessible summary-level data from genome-wide association studies (GWAS), this study employed the two-sample MR research method to investigate causal relationships among 731 immune cell phenotypes, 1400 metabolite levels, and AR. Additionally, employing the mediation MR approach, the study analyzed potential mediated effect of metabolites in the relationships between immune cells and AR. Various sensitivity analysis methods were systematically employed to ensure the robustness of the results.
Following false discovery rate (FDR) correction, we identified three immune cell phenotypes as protective factors for AR: Naive CD8br %CD8br (odds ratio (OR): 0.978, 95% CI = 0.966-0.990, P = 4.5×10-4), CD3 on CD39+ activated Treg (OR: 0.947, 95% CI = 0.923-0.972, P = 3×10-5), HVEM on CD45RA- CD4+ (OR: 0.967, 95% CI = 0.948-0.986, P = 4×10-5). Additionally, three metabolite levels were identified as risk factors for AR: N-methylhydroxyproline levels (OR: 1.219, 95% CI = 1.104-1.346, P = 9×10-5), N-acetylneuraminate levels (OR: 1.133, 95% CI = 1.061-1.211, P = 1.7×10-4), 1-stearoyl-2-arachidonoyl-gpc (18:0/20:4) levels (OR: 1.058, 95% CI = 1.029-1.087, P = 5×10-5). Mediation MR analysis indicated a causal relationship between Naive CD8br %CD8br and N-methylhydroxyproline levels, acting as a protective factor (OR: 0.971, 95% CI = 0.950-0.992, P = 8.31×10-3). The mediated effect was -0.00574, accounting for 26.1% of the total effect, with a direct effect of -0.01626. Naive CD8+ T cells exert a protective effect on AR by reducing N-methylhydroxyproline levels.
Our study, delving into genetic information, has substantiated the intricate connection between immune cell phenotypes and metabolite levels with AR. This reveals a potential pathway to prevent the onset of AR, providing guiding directions for future clinical investigations.
Chen Z
,Suo Y
,Du X
,Zhao X
... -
《Frontiers in Immunology》