Exergaming for dementia and mild cognitive impairment.


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(184)
引证文献(1)
-
Exergaming for dementia and mild cognitive impairment.
Voinescu A ,Papaioannou T ,Petrini K ,Stanton Fraser D ... - 《Cochrane Database of Systematic Reviews》
被引量: 1 发表:1970年 -
Exercise therapy for chronic fatigue syndrome.
Editorial note (19 December 2024; amended 31 January 2025): Larun L, Brurberg KG, Odgaard‐Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database of Systematic Reviews 2019, Issue 10. Art. No.: CD003200. DOI: 10.1002/14651858.CD003200.pub8. Accessed 18 December 2024. This Editorial Note is for the above article, published online on 2 October 2019 on the Cochrane Library (https://www.cochranelibrary.com/), and has been issued by the Publisher, John Wiley & Sons Ltd, in agreement with the Cochrane Collaboration. The Editorial note has been agreed to inform readers that Cochrane is ceasing the production of a full update of this Cochrane review. A pilot project for engaging interest holders in the development of this Cochrane review was initiated on 2 October 2019 (see Editorial Note below) and has now been disbanded. Cochrane maintains its decision to publish this Cochrane review in 2019, which includes studies from searches up to 9 May 2014. Editorial note (2 October 2019): A statement from the Editor in Chief about this review and its planned update is available at https://www.cochrane.org/news/cfs Chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME) is a serious disorder characterised by persistent postexertional fatigue and substantial symptoms related to cognitive, immune and autonomous dysfunction. There is no specific diagnostic test, therefore diagnostic criteria are used to diagnose CFS. The prevalence of CFS varies by type of diagnostic criteria used. Existing treatment strategies primarily aim to relieve symptoms and improve function. One treatment option is exercise therapy. The objective of this review was to determine the effects of exercise therapy for adults with CFS compared with any other intervention or control on fatigue, adverse outcomes, pain, physical functioning, quality of life, mood disorders, sleep, self-perceived changes in overall health, health service resources use and dropout. We searched the Cochrane Common Mental Disorders Group controlled trials register, CENTRAL, and SPORTDiscus up to May 2014, using a comprehensive list of free-text terms for CFS and exercise. We located unpublished and ongoing studies through the World Health Organization International Clinical Trials Registry Platform up to May 2014. We screened reference lists of retrieved articles and contacted experts in the field for additional studies. We included randomised controlled trials (RCTs) about adults with a primary diagnosis of CFS, from all diagnostic criteria, who were able to participate in exercise therapy. Two review authors independently performed study selection, 'Risk of bias' assessments and data extraction. We combined continuous measures of outcomes using mean differences (MDs) or standardised mean differences (SMDs). To facilitate interpretation of SMDs, we re-expressed SMD estimates as MDs on more common measurement scales. We combined dichotomous outcomes using risk ratios (RRs). We assessed the certainty of evidence using GRADE. We included eight RCTs with data from 1518 participants. Exercise therapy lasted from 12 weeks to 26 weeks. The studies measured effect at the end of the treatment and at long-term follow-up, after 50 weeks or 72 weeks. Seven studies used aerobic exercise therapies such as walking, swimming, cycling or dancing, provided at mixed levels in terms of intensity of the aerobic exercise from very low to quite rigorous, and one study used anaerobic exercise. Control groups consisted of passive control, including treatment as usual, relaxation or flexibility (eight studies); cognitive behavioural therapy (CBT) (two studies); cognitive therapy (one study); supportive listening (one study); pacing (one study); pharmacological treatment (one study) and combination treatment (one study). Most studies had a low risk of selection bias. All had a high risk of performance and detection bias. Exercise therapy compared with 'passive' control Exercise therapy probably reduces fatigue at end of treatment (SMD -0.66, 95% CI -1.01 to -0.31; 7 studies, 840 participants; moderate-certainty evidence; re-expressed MD -3.4, 95% CI -5.3 to -1.6; scale 0 to 33). We are uncertain if fatigue is reduced in the long term because the certainty of the evidence is very low (SMD -0.62, 95 % CI -1.32 to 0.07; 4 studies, 670 participants; re-expressed MD -3.2, 95% CI -6.9 to 0.4; scale 0 to 33). We are uncertain about the risk of serious adverse reactions because the certainty of the evidence is very low (RR 0.99, 95% CI 0.14 to 6.97; 1 study, 319 participants). Exercise therapy may moderately improve physical functioning at end of treatment, but the long-term effect is uncertain because the certainty of the evidence is very low. Exercise therapy may also slightly improve sleep at end of treatment and at long term. The effect of exercise therapy on pain, quality of life and depression is uncertain because evidence is missing or of very low certainty. Exercise therapy compared with CBT Exercise therapy may make little or no difference to fatigue at end of treatment (MD 0.20, 95% CI -1.49 to 1.89; 1 study, 298 participants; low-certainty evidence), or at long-term follow-up (SMD 0.07, 95% CI -0.13 to 0.28; 2 studies, 351 participants; moderate-certainty evidence). We are uncertain about the risk of serious adverse reactions because the certainty of the evidence is very low (RR 0.67, 95% CI 0.11 to 3.96; 1 study, 321 participants). The available evidence suggests that there may be little or no difference between exercise therapy and CBT in physical functioning or sleep (low-certainty evidence) and probably little or no difference in the effect on depression (moderate-certainty evidence). We are uncertain if exercise therapy compared to CBT improves quality of life or reduces pain because the evidence is of very low certainty. Exercise therapy compared with adaptive pacing Exercise therapy may slightly reduce fatigue at end of treatment (MD -2.00, 95% CI -3.57 to -0.43; scale 0 to 33; 1 study, 305 participants; low-certainty evidence) and at long-term follow-up (MD -2.50, 95% CI -4.16 to -0.84; scale 0 to 33; 1 study, 307 participants; low-certainty evidence). We are uncertain about the risk of serious adverse reactions (RR 0.99, 95% CI 0.14 to 6.97; 1 study, 319 participants; very low-certainty evidence). The available evidence suggests that exercise therapy may slightly improve physical functioning, depression and sleep compared to adaptive pacing (low-certainty evidence). No studies reported quality of life or pain. Exercise therapy compared with antidepressants We are uncertain if exercise therapy, alone or in combination with antidepressants, reduces fatigue and depression more than antidepressant alone, as the certainty of the evidence is very low. The one included study did not report on adverse reactions, pain, physical functioning, quality of life, sleep or long-term results. Exercise therapy probably has a positive effect on fatigue in adults with CFS compared to usual care or passive therapies. The evidence regarding adverse effects is uncertain. Due to limited evidence it is difficult to draw conclusions about the comparative effectiveness of CBT, adaptive pacing or other interventions. All studies were conducted with outpatients diagnosed with 1994 criteria of the Centers for Disease Control and Prevention or the Oxford criteria, or both. Patients diagnosed using other criteria may experience different effects.
Larun L ,Brurberg KG ,Odgaard-Jensen J ,Price JR ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Exercise therapy for chronic fatigue syndrome.
Larun L ,Brurberg KG ,Odgaard-Jensen J ,Price JR ... - 《Cochrane Database of Systematic Reviews》
被引量: 52 发表:1970年 -
People with central neurological disease or injury have a much higher risk of both faecal incontinence (FI) and constipation than the general population. There is often a fine line between the two symptoms, with management intended to ameliorate one risking precipitating the other. Bowel problems are observed to be the cause of much anxiety and may reduce quality of life in these people. Current bowel management is largely empirical, with a limited research base. The review is relevant to individuals with any disease directly and chronically affecting the central nervous system (post-traumatic, degenerative, ischaemic or neoplastic), such as multiple sclerosis, spinal cord injury, cerebrovascular disease, Parkinson's disease and Alzheimer's disease. This is an update of a Cochrane Review first published in 2001 and subsequently updated in 2003, 2006 and 2014. To assess the effects of conservative, physical and surgical interventions for managing FI and constipation in people with a neurological disease or injury affecting the central nervous system. We searched the Cochrane Incontinence Specialised Register (searched 27 March 2023), which includes searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE In-Process, MEDLINE Epub Ahead of Print, ClinicalTrials.gov, WHO ICTRP as well as handsearching of journals and conference proceedings; and all reference lists of relevant articles. We included randomised, quasi-randomised (where allocation is not strictly random), cross-over and cluster-randomised trials evaluating any type of conservative, physical or surgical intervention against placebo, usual care or no intervention for the management of FI and constipation in people with central neurological disease or injury. At least two review authors independently assessed the risk of bias in eligible trials using Cochrane's 'Risk of bias' tool and independently extracted data from the included trials using a range of prespecified outcome measures. We produced summary of findings tables for our main outcome measures and assessed the certainty of the evidence using GRADE. We included 25 studies with 1598 participants. The studies were generally at high risk of bias due to lack of blinding of participants and personnel to the intervention. Half of the included studies were also at high risk of bias in terms of selective reporting. Outcomes were often reported heterogeneously across studies, making it difficult to pool data. We did not find enough evidence to be able to analyse the effects of interventions on individual central neurological diseases. Additionally, very few studies reported on the primary outcomes of self-reported improvement in FI or constipation, or Neurogenic Bowel Dysfunction Score. Conservative interventions compared with usual care, no active treatment or placebo Thirteen studies assessed this comparison. The interventions included assessment-based nursing, holistic nursing, probiotics, psyllium, faecal microbiota transplantation, and a stepwise protocol of increasingly invasive evacuation methods. Conservative interventions may result in a large improvement in faecal incontinence (standardised mean difference (SMD) -1.85, 95% confidence interval (CI) -3.47 to -0.23; 3 studies; n = 410; low-certainty evidence). We interpreted SMD ≥ 0.80 as a large effect. It was not possible to pool all data from studies that assessed improvement in constipation, but the evidence suggested that conservative interventions may improve constipation symptoms (data not pooled; 8 studies; n = 612; low-certainty evidence). Conservative interventions may lead to a reduction in mean time taken on bowel care (data not pooled; 5 studies; n = 526; low-certainty evidence). The evidence is uncertain about the effects of conservative interventions on condition-specific quality of life and adverse events. Neurogenic Bowel Dysfunction Score was not reported. Physical therapy compared with usual care, no active treatment or placebo Twelve studies assessed this comparison. The interventions included massage therapy, standing, osteopathic manipulative treatment, electrical stimulation, transanal irrigation, and conventional physical therapy with visceral mobilisation. Physical therapies may make little to no difference to self-reported faecal continence assessed using the St Mark's Faecal Incontinence Score, where the minimally important difference is five, or the Cleveland Constipation Score (MD -2.60, 95% CI -4.91 to -0.29; 3 studies; n = 155; low-certainty evidence). Physical therapies may result in a moderate improvement in constipation symptoms (SMD -0.62, 95% CI -1.10 to -0.14; 9 studies; n = 431; low-certainty evidence). We interpreted SMD ≥ 0.5 as a moderate effect. However, physical therapies may make little to no difference in Neurogenic Bowel Dysfunction Score as the minimally important difference for this tool is 3 (MD -1.94, 95% CI -3.36 to -0.51; 7 studies; n = 358; low-certainty evidence). We are very uncertain about the effects of physical therapies on the time spent on bowel care, condition-specific quality of life and adverse effects (all very low-certainty evidence). Surgical interventions compared with usual care, no active treatment or placebo No studies were found for surgical interventions that met the inclusion criteria for this review. There remains little research on this common and, for patients, very significant issue of bowel management. The available evidence is almost uniformly of low methodological quality. The clinical significance of some of the research findings presented here is difficult to interpret, not least because each intervention has only been addressed in individual trials, against control rather than compared against each other, and the interventions are very different from each other. Understanding whether there is a clinically-meaningful difference from the results of available trials is largely hampered by the lack of uniform outcome measures. This is due to an absence of core outcome sets, and development of these needs to be a research priority to allow studies to be compared directly. Some studies used validated constipation, incontinence or condition-specific measures; however, others used unvalidated analogue scales to report effectiveness. Some studies did not use any patient-reported outcomes and focused on physiological outcome measures, which is of relatively limited significance in terms of clinical implementation. There was evidence in favour of some conservative interventions, but these findings need to be confirmed by larger, well-designed controlled trials, which should include evaluation of the acceptability of the intervention to patients and the effect on their quality of life.
Todd CL ,Johnson EE ,Stewart F ,Wallace SA ,Bryant A ,Woodward S ,Norton C ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Workplace pedometer interventions for increasing physical activity.
The World Health Organization (WHO) recommends undertaking 150 minutes of moderate-intensity physical activity per week, but most people do not. Workplaces present opportunities to influence behaviour and encourage physical activity, as well as other aspects of a healthy lifestyle. A pedometer is an inexpensive device that encourages physical activity by providing feedback on daily steps, although pedometers are now being largely replaced by more sophisticated devices such as accelerometers and Smartphone apps. For this reason, this is the final update of this review. To assess the effectiveness of pedometer interventions in the workplace for increasing physical activity and improving long-term health outcomes. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Occupational Safety and Health (OSH) UPDATE, Web of Science, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform from the earliest record to December 2016. We also consulted the reference lists of included studies and contacted study authors to identify additional records. We updated this search in May 2019, but these results have not yet been incorporated. One more study, previously identified as an ongoing study, was placed in 'Studies awaiting classification'. We included randomised controlled trials (RCTs) of workplace interventions with a pedometer component for employed adults, compared to no or minimal interventions, or to alternative physical activity interventions. We excluded athletes and interventions using accelerometers. The primary outcome was physical activity. Studies were excluded if physical activity was not measured. We used standard methodological procedures expected by Cochrane. When studies presented more than one physical activity measure, we used a pre-specified list of preferred measures to select one measure and up to three time points for analysis. When possible, follow-up measures were taken after completion of the intervention to identify lasting effects once the intervention had ceased. Given the diversity of measures found, we used ratios of means (RoMs) as standardised effect measures for physical activity. We included 14 studies, recruiting a total of 4762 participants. These studies were conducted in various high-income countries and in diverse workplaces (from offices to physical workplaces). Participants included both healthy populations and those at risk of chronic disease (e.g. through inactivity or overweight), with a mean age of 41 years. All studies used multi-component health promotion interventions. Eleven studies used minimal intervention controls, and four used alternative physical activity interventions. Intervention duration ranged from one week to two years, and follow-up after completion of the intervention ranged from three to ten months. Most studies and outcomes were rated at overall unclear or high risk of bias, and only one study was rated at low risk of bias. The most frequent concerns were absence of blinding and high rates of attrition. When pedometer interventions are compared to minimal interventions at follow-up points at least one month after completion of the intervention, pedometers may have no effect on physical activity (6 studies; very low-certainty evidence; no meta-analysis due to very high heterogeneity), but the effect is very uncertain. Pedometers may have effects on sedentary behaviour and on quality of life (mental health component), but these effects were very uncertain (1 study; very low-certainty evidence). Pedometer interventions may slightly reduce anthropometry (body mass index (BMI) -0.64, 95% confidence interval (CI) -1.45 to 0.18; 3 studies; low-certainty evidence). Pedometer interventions probably had little to no effect on blood pressure (systolic: -0.08 mmHg, 95% CI -3.26 to 3.11; 2 studies; moderate-certainty evidence) and may have reduced adverse effects (such as injuries; from 24 to 10 per 100 people in populations experiencing relatively frequent events; odds ratio (OR) 0.50, 95% CI 0.30 to 0.84; low-certainty evidence). No studies compared biochemical measures or disease risk scores at follow-up after completion of the intervention versus a minimal intervention. Comparison of pedometer interventions to alternative physical activity interventions at follow-up points at least one month after completion of the intervention revealed that pedometers may have an effect on physical activity, but the effect is very uncertain (1 study; very low-certainty evidence). Sedentary behaviour, anthropometry (BMI or waist circumference), blood pressure (systolic or diastolic), biochemistry (low-density lipoprotein (LDL) cholesterol, total cholesterol, or triglycerides), disease risk scores, quality of life (mental or physical health components), and adverse effects at follow-up after completion of the intervention were not compared to an alternative physical activity intervention. Some positive effects were observed immediately at completion of the intervention periods, but these effects were not consistent, and overall certainty of evidence was insufficient to assess the effectiveness of workplace pedometer interventions. Exercise interventions can have positive effects on employee physical activity and health, although current evidence is insufficient to suggest that a pedometer-based intervention would be more effective than other options. It is important to note that over the past decade, technological advancement in accelerometers as commercial products, often freely available in Smartphones, has in many ways rendered the use of pedometers outdated. Future studies aiming to test the impact of either pedometers or accelerometers would likely find any control arm highly contaminated. Decision-makers considering allocating resources to large-scale programmes of this kind should be cautious about the expected benefits of incorporating a pedometer and should note that these effects may not be sustained over the longer term. Future studies should be designed to identify the effective components of multi-component interventions, although pedometers may not be given the highest priority (especially considering the increased availability of accelerometers). Approaches to increase the sustainability of intervention effects and behaviours over a longer term should be considered, as should more consistent measures of physical activity and health outcomes.
Freak-Poli R ,Cumpston M ,Albarqouni L ,Clemes SA ,Peeters A ... - 《Cochrane Database of Systematic Reviews》
被引量: 18 发表:1970年
加载更多
加载更多
加载更多