Identification of CDK2-Related Immune Forecast Model and ceRNA in Lung Adenocarcinoma, a Pan-Cancer Analysis.
Tumor microenvironment (TME) plays important roles in different cancers. Our study aimed to identify molecules with significant prognostic values and construct a relevant Nomogram, immune model, competing endogenous RNA (ceRNA) in lung adenocarcinoma (LUAD).
"GEO2R," "limma" R packages were used to identify all differentially expressed mRNAs from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Genes with P-value <0.01, LogFC>2 or <-2 were included for further analyses. The function analysis of 250 overlapping mRNAs was shown by DAVID and Metascape software. By UALCAN, Oncomine and R packages, we explored the expression levels, survival analyses of CDK2 in 33 cancers. "Survival," "survminer," "rms" R packages were used to construct a Nomogram model of age, gender, stage, T, M, N. Univariate and multivariate Cox regression were used to establish prognosis-related immune forecast model in LUAD. CeRNA network was constructed by various online databases. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to explore correlations between CDK2 expression and IC50 of anti-tumor drugs.
A total of 250 differentially expressed genes (DEGs) were identified to participate in many cancer-related pathways, such as activation of immune response, cell adhesion, migration, P13K-AKT signaling pathway. The target molecule CDK2 had prognostic value for the survival of patients in LUAD (P = 5.8e-15). Through Oncomine, TIMER, UALCAN, PrognoScan databases, the expression level of CDK2 in LUAD was higher than normal tissues. Pan-cancer analysis revealed that the expression, stage and survival of CDK2 in 33 cancers, which were statistically significant. Through TISIDB database, we selected 13 immunodepressants, 21 immunostimulants associated with CDK2 and explored 48 genes related to these 34 immunomodulators in cBioProtal database (P < 0.05). Gene Set Enrichment Analysis (GSEA) and Metascape indicated that 49 mRNAs were involved in PUJANA ATM PCC NETWORK (ES = 0.557, P = 0, FDR = 0), SIGNAL TRANSDUCTION (ES = -0.459, P = 0, FDR = 0), immune system process, cell proliferation. Forest map and Nomogram model showed the prognosis of patients with LUAD (Log-Rank = 1.399e-08, Concordance Index = 0.7). Cox regression showed that four mRNAs (SIT1, SNAI3, ASB2, and CDK2) were used to construct the forecast model to predict the prognosis of patients (P < 0.05). LUAD patients were divided into two different risk groups (low and high) had a statistical significance (P = 6.223e-04). By "survival ROC" R package, the total risk score of this prognostic model was AUC = 0.729 (SIT1 = 0.484, SNAI3 = 0.485, ASB2 = 0.267, CDK2 = 0.579). CytoHubba selected ceRNA mechanism medicated by potential biomarkers, 6 lncRNAs-7miRNAs-CDK2. The expression of CDK2 was associated with IC50 of 89 antitumor drugs, and we showed the top 20 drugs with P < 0.05.
In conclusion, our study identified CDK2 related immune forecast model, Nomogram model, forest map, ceRNA network, IC50 of anti-tumor drugs, to predict the prognosis and guide targeted therapy for LUAD patients.
Liu TT
,Li R
,Huo C
,Li JP
,Yao J
,Ji XL
,Qu YQ
... -
《Frontiers in Cell and Developmental Biology》
Anoikis-related subtype and prognosis analyses based on bioinformatics, and an expression verification of ANGPTL4 based on experiments of lung adenocarcinoma.
Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high mortality. Anoikis resistance is an important mechanism of tumor cell proliferation and migration. Our research is devoted to exploring the role of anoikis in the diagnosis, classification, and prognosis of LUAD.
We downloaded the expression profile, mutation, and clinical data of LUAD from The Cancer Genome Atlas (TCGA) database. The "ConsensusClusterPlus" package was then used for the cluster analysis, and least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were used to establish the prognostic model. We verified the reliability of the model using a Gene Expression Omnibus (GEO) data set. A gene set variation analysis (GSVA) was conducted to investigate the functional enrichment differences in the different clusters and risk groups. The CIBERSORT algorithm and a single-sample gene set enrichment analysis (ssGSEA) were used to analyze immune cell infiltration. The tumor mutation burden (TMB) and Tumor Immune Dysfunction and Exclusion (TIDE) scores were used to evaluate the patients' sensitivity to immunotherapy. Immunohistochemical staining of tissue microarrays was used to verify the correlation between ANGPTL4 expression and the clinicopathological characteristics and prognosis of LUAD patients.
First, we screened 135 differentially expressed anoikis-related genes (ARGs) and 23 prognosis-related ARGs from TCGA-LUAD data set. Next, 494 LUAD samples were allocated to cluster A and cluster B based on the 23 prognosis-related ARGs. The Kaplan-Meier (K-M) analysis showed the overall survival (OS) of cluster B was better than that of cluster A. The clinicopathological characteristics and functional enrichment analyses revealed significant differences between clusters A and B. The tumor microenvironment (TME) analysis showed that cluster B had more immune cell infiltration and a higher TME score than cluster A. Subsequently, a LASSO Cox regression model of LUAD was constructed with ten ARGs. The K-M analysis showed that the low-risk patients had longer OS than the high-risk patients. The receiver operating characteristic curve, nomogram, and GEO data set verification results showed that the model had high accuracy and reliability. The level of immune cell infiltration and TME score were higher in the low-risk group than the high-risk group. The high-risk group had stronger sensitivity to immune checkpoint block therapy and weaker sensitivity to chemotherapy drugs than the low-risk group. ANGPTL4 expression was correlated with stage, tumor differentiation, tumor size, lymph node metastasis, and OS.
We discovered novel molecular subtypes and constructed a novel prognostic model of LUAD. Our findings provide important insights into subtype classification and the accurate survival prediction of LUAD. We also identified ANGPTL4 as a prognostic indicator of LUAD.
Shen X
,Xie J
,Liu S
,Cai Y
,Yuan S
,Uehara Y
,Zhu D
,Zheng M
... -
《-》
The prognostic value of immune escape-related genes in lung adenocarcinoma.
Lung cancer is one of the most common cancers in humans, and lung adenocarcinoma (LUAD) has become the most common histological type of lung cancer. Immune escape promotes progression of LUAD from the early to metastatic late stages and is one of the main obstacles to improving clinical outcomes for immunotherapy targeting immune detection points. Our study aims to explore the immune escape related genes that are abnormally expressed in lung adenocarcinoma, providing assistance in predicting the prognosis of lung adenocarcinoma and targeted.
RNA data and related clinical details of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) database. Through weighted gene coexpression network analysis (WGCNA), 3112 key genes were screened and intersected with 182 immune escape genes obtained from a previous study to identify the immune escape-related genes (IERGs). The role of IERGs in LUAD was systematically explored through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analyses, which were used to enrich the relevant pathways of IERGs. The least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression analysis were used to identify the key prognostic genes, and a prognostic risk model was constructed. Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data (ESTIMATE) and microenvironment cell populations (MCP) counter methods (which can accurately assess the amount of eight immune cell populations and two stromal cell groups) were used to analyze the tumor immune status of the high and low risk subgroups. The protein expression level of the differentially expressed genes in lung cancer samples was determined by using the Human Protein Atlas (HPA) database. A nomogram was constructed, and the prognostic risk model was verified via the Gene Expression Omnibus (GEO) datasets GSE72094 and GSE30219.
Twenty differentially expressed IERGs were obtained. GO analysis of these 20 IERGs revealed that they were mainly associated with the regulation of immune system processes, immune responses, and interferon-γ enrichment in mediating signaling pathways and apoptotic signaling pathways; meanwhile, KEGG analysis revealed that IERGs were associated with necroptosis, antigen processing and presentation, programmed cell death ligand 1 (PD-L1) expression and programmed cell death 1 (PD-1) pathway in tumors, cytokine-cytokine receptor interactions, T helper cell 1 (Th1) and Th2 differentiation, and tumor necrosis factor signaling pathways. Using LASSO and Cox regression analysis, we constructed a four-gene model that could predict the prognosis of patients with LUAD, and the model was validated with a validation cohort. The immunohistochemical results of the HPA database showed that AHSA1 and CEP55 had low expression in normal lung tissue but high expression in lung cancer tissue.
We constructed an IERG-based model for predicting the prognosis of LUAD. Among the genes identified, CEP55 and AHSA1 may be potential prognostic and therapeutic targets, and reducing their expression may represent a novel approach in the treatment of LUAD.
Jia HR
,Li WC
,Wu L
《-》
Comprehensive analysis to identify GNG7 as a prognostic biomarker in lung adenocarcinoma correlating with immune infiltrates.
Background: G Protein Subunit Gamma 7 (GNG7), an important regulator of cell proliferation and cell apoptosis, has been reported to be downregulated in a variety of tumors including lung adenocarcinoma (LUAD). However, the correlation between low expression of GNG7 and prognosis of LUAD as well as the immune infiltrates of LUAD remains unclear. Methods: The samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). R software was performed for statistical analysis. GNG7 expression and its prognostic value in LUAD were assessed through statistically analyzing the data from different databases. A nomogram was constructed to predict the impact of GNG7 on prognosis. Gene set enrichment analysis (GSEA) and single-sample gene set enrichment analyses GSEA (ssGSEA) were employed to determine the potential signal pathways and evaluated the immune cell infiltration regulated by GNG7. The prognostic significance of GNG7 expression associated with immune cell infiltration was investigated using the Tumor Immune Estimation Resource 2.0 (TIMER2.0) and the Kaplan-Meier plotter database. The UALCAN, cBio Cancer Genomics Portal (cBioPortal) and MethSurv database were used to analyze the correlation between the methylation of GNG7 and its mRNA expression as well as prognostic significance. Results: GNG7 was demonstrated to be down-regulated in LUAD and its low expression was associated with poor prognosis. A clinical reliable prognostic-predictive model was constructed. Pathway enrichment showed that GNG7 was highly related to the B cell receptor signaling pathway. Further analysis showed that GNG7 was positively associated with B cell infiltration and low levels of B cell infiltration tended to associate with worse prognosis in patients with low GNG7 expression. Moreover, methylation analysis suggested hypermethylation may contribute to the low expression of GNG7 in LUAD. Conclusion: Decreased expression of GNG7 at least partly caused by hypermethylation of the GNG7 promoter is closely associated with poor prognosis and tumor immune cell infiltration (especially B cells) in LUAD. These results suggest that GNG7 may be a promising prognostic biomarker and a potential immunotherapeutic target for LUAD, which provides new insights into immunotherapy for LUAD.
Wei Q
,Miao T
,Zhang P
,Jiang B
,Yan H
... -
《Frontiers in Genetics》