Kaempferol attenuates doxorubicin-induced renal tubular injury by inhibiting ROS/ASK1-mediated activation of the MAPK signaling pathway.
Doxorubicin (DOX) is one of the most commonly used antineoplastic agents; however, its considerable nephrotoxicity restricts its clinical use. Kaempferol (KPF), a naturally-occurring flavonoid, possesses various biological benefits, including anti-tumor activity that has garnered increasing attention. This study aimed to evaluate the possible reno-protective role of KPF in DOX nephrotoxicity.
Male BALB/c mice were injected with DOX via the tail vein to imitate renal damage. Their body and kidney were weighed after 2 weeks of KPF therapy, and urine, serum, and tissue samples were obtained to establish proteinuria, serum creatinine, and pathological alterations. The variations in SOD, GSH, CTA, MDA, and SOD2 expression in renal tissues were measured, and p-ASK1, p-p38, and P-JNK were evaluated by western blot. Cell viability was detected using MTT tests. Apoptosis was assessed by TUNEL, Hoechst 33342, PI staining, and western blot. Fluorescent ROS probes were used to assess oxidative cell damage.
KPF ameliorated DOX-induced renal injury, improved proteinuria and renal function, restored GSH content, SOD activity and CTA activity in kidneys, inhibited the overproduction of MDA, and suppressed DOX-induced activation of the MAPK signaling pathway. In NRK-52E cells, KPF significantly inhibited DOX-induced ROS overproduction, restrained the activation of MAPK signaling pathway, and alleviated DOX-induced cell morphological damage and loss of cell viability, While it did not affect the toxicity of DOX to 4T1 cells.
KPF provides a protective effect against DOX-induced nephrotoxicity while maintaining the cytotoxicity of DOX in breast cancer cells, thereby it may provide a viable solution to lessen renal toxicity in cancer patients receiving DOX.
Wu Q
,Chen J
,Zheng X
,Song J
,Yin L
,Guo H
,Chen Q
,Liu Y
,Ma Q
,Zhang H
,Yang Q
... -
《-》
Non-lethal sonodynamic therapy mitigates hypertensive renal fibrosis through the PI3K/AKT/mTORC1-autophagy pathway.
Hypertension constitutes a significant public health concern, characterized by a high incidence and mortality rate. Hypertensive kidney disease is a prevalent complication associated with hypertension and is the second leading cause of end-stage renal disease (ESRD). Renal fibrosis linked to hypertension has emerged as the third leading cause of disease in dialysis patients. Autophagy activity is crucial for maintaining homeostasis, vitality, and physiological function of kidney cells, while also protecting the kidneys from fibrosis. The deficiency of autophagy will increase the sensitivity of the kidney to the damage, leading to impaired renal function, accumulation of damaged mitochondria and more severe of renal fibrosis. However, enhancing autophagy by activating the PI3K/AKT, AMPK, and mTOR pathways, improves podocyte injury and renal pathological changes, and ameliorates renal function. Current clinical interventions aimed at halting or reversing renal fibrosis in hypertensive patients are notably limited in their efficacy. Here, we present Non-lethal Sonodynamic Therapy (NL-SDT), in which ultrasound is used to activate locally sonosensitizers, thereby stimulating the production of reactive oxygen species for the purpose of modulating cell function or fate, as a novel methodology to inhibit progression of hypertensive renal fibrosis.To confirm whether NL-SDT can reduce hypertensive renal fibrosis and its mechanism. The mice model of hypertensive renal fibrosis was established by using osmotic minipumps (Alzet model 2004, Cupertino, CA) equipped with angiotensin-II (Ang II). The pumps were implanted in mice, ensuring constant infusion of Ang II at a dose of 1.0 µg/kg per minute for 4 weeks. The mice were exposed to 0.4 W/cm2 intensity ultrasonic radiation for 15 min at 4 h post injection of sinoporphyrin sodium (DVDMS) (4 mg/kg) into the caudal vein was repeated weekly for 4 treatments. The kidney from mice was stained with masson's trichrome staining for collagen fiber expression, while alpha-smooth muscle actin (α-SMA) expression was determined via immunohistochemical staining. The protein levels of fibrosis parameters (α-SMA, collagen I, vimentin), pathway-related proteins (PI3K, AKT, mTORC1) and autophagy-related protein LC3B were determined using western blotting. Intracellular reactive oxygen species (ROS) levels were detected using DCFH-DA probe. Immunofluorescence was also used to observe the expression of α-SMA and E-cadherin in cells. Pathway-related protein inhibitors (the autophagy-related inhibitor 3-methyladenine (3-MA), chloroquine (CQ), ROS inhibitor N-acetyl-L-cysteine (NAC) were applied, and autophagosome changes were observed under transmission electron microscopy. Immunofluorescence was used to observe LC3 spot formation within cells.We obtained the following results via animal and cellular research. In vivo, (1) The collagen area of renal tissue was increased significantly in Ang II group (50.6%). The positive expression of α-SMA was increased significantly (37.8%). (2) The collagen area decreased after NL-SDT treatment (34.8%). The expression of α-SMA was decreased too (48.9%). The expression of LC3B increased in NL-SDT group. (3) The effect of NL-SDT on reducing renal fibrosis can be changed by rapamycin and CQ. In vitro. (1) The expression of α-SMA, collagen I and vimentin were increased significantly in TGF-β1-induced NRK-52E cells. (2) The increase of autophagosomes was observed in TGF-β1-induced NRK-52E cells after NL-SDT. The levels of ROS were increased after NL-SDT (24.8%). The effect of NL-SDT on autophagy was reversed after administration of NAC. The expression of PI3K, P-AKT and P-mTORC1 was decreased in TGF-β1-induced NRK-52E cells after NL-SDT. NL-SDT inhibited the transition of epithelial cells into myofibroblasts by activating PI3K-AKT-mTORC1-autophagy pathway in TGF-β1-induced NRK-52E cells. (3) The administration of the pathway inhibitors showed a reciprocal effect on NL-SDT-inhibited epithelial-mesenchymal transition (EMT).(1) NL-SDT reduced blood pressure temporarily in mice model of hypertensive renal fibrosis induced by Ang II. (2) NL-SDT alleviated renal fibrosis in mice model of hypertensive renal fibrosis induced by Ang II. (3) NL-SDT promoted autophagy by inhibiting PI3K-AKT-mTORC1 signaling pathway and alleviated renal fibrosis in mice model of hypertensive renal fibrosis induced by Ang II. NL-SDT is a non-invasive and efficacious regimen to inhibit renal fibrosis. It may be a new approach for clinical treatment of renal fibrosis, delaying or reducing the occurrence of ESRD.
Liu D
,Wang H
,Li J
,Sheng S
,Wang S
,Tian Y
... -
《Scientific Reports》
Suyin Detoxification Granule alleviates trimethylamine N-oxide-induced tubular ferroptosis and renal fibrosis to prevent chronic kidney disease progression.
Trimethylamine N-oxide (TMAO), a gut microbiota metabolite, is a risk factor for chronic kidney disease (CKD) progression. Suyin Detoxification Granule (SDG) is a traditional Chinese medicine preparation that has been proven to significantly reduce renal function damage and serum TMAO levels in patients with CKD. However, its specific mechanism remains unclear.
This study investigated the role of TMAO-induced ferroptosis in CKD, and further explored the mechanism of SDG in improving TMAO-induced kidney injury.
A TMAO renal tubular epithelial cell injury model was constructed in vitro. After using freeze-dried powder of Suyin Detoxification Prescription (SDP), proteomic analysis, Western blotting, ferroptosis phenotype-related detection, and ELISA were performed to explore its mechanism. In vivo, a adenine-induced CKD model was established, with or without a high-choline diet to observe the impact of TMAO on CKD, and SDG or 3,3-Dimethyl-1-butanol (DMB, a TMAO inhibitor) was used for intervention. The composition of gut microbiota was analyzed using 16SrRNA sequencing, and the effect of SDG on gut-derived TMAO-induced kidney injury under the background of CKD was evaluated by pathological staining, immunoblotting, immunohistochemistry, and fluorescence staining.
In vitro, TMAO could induce ferroptosis and secrete profibrotic factors in NRK-52E cells. SDP could inhibit TMAO-induced ferroptosis and reduce the secretion of profibrotic factors. The amelioration of ferroptosis by SDP was also verified in RSL3-induced cells. In vivo, our results demonstrated that gut-derived TMAO could promote CKD progression by inducing tubular ferroptosis, profibrotic factors expression and renal fibrosis. In addition, we illustrated that SDG might reduce circulating TMAO levels by down-regulating the gut microbiota related to TMAO (including Muribaculaceae, Bacteroides and Ruminococcaceae_UCG-010). Furthermore, SDG could prevent CKD progression by reducing TMAO-induced renal damage.
SDG reduced circulating TMAO levels by regulating gut microbiota and inhibited TMAO-induced renal tubular ferroptosis, profibrotic factors secretion, and renal fibrosis to prevent CKD progression.
Ge H
,Wei Y
,Zhang W
,Yong C
,Chen Y
,Zhou E
... -
《-》